Nitrate is on the most seriou pollutant encountered in shallow groundwater aquifer in agricultural area. There are various remediation technologies such as ion exchange, reverse osmosis, and biological denitrification to recover from nitrate contamination. Biological denitrification by indigenous microorganism of the technologies has been reviewed and applied on nitrate contaminated groundwater. In this work, we selected the site where the annual nitrate (NO
3−) concentration is over 105 mg/L and evaluated denitrification process with sampled soil and groundwater from 3 monitoring wells (MW4, 5, 6). In the results, the nitrate degradation rate in each well (MW 4, 5, and 6) was 25 NO
3− mg/L/day, 6 NO
3− mg/L/day, and 3.4 NO
3− mg/L/day, respectively. Nitrate degradation rate was higher in batch system treated with 2 times higher fumarate as carbon source than control batch system (0.42M fumrate/1M NO
3−), comparing with batch system with soil sample. This result indicates that increase of carbon source is more efficient to enhance denitrification rate than addition of soil sample to increase microbial dynamics. In this work, we also confirmed that monitoring method of functional genes (nirK and nosZ) involved in denitrification process can be applied to evaluated denitrifcation process possibility before application of field process such as in-situ denitrification by push-pull test.
Keywords: Nitrate;Denitrification;Fumarate;Functional genes (nirK;nosZ);