• A Study of the Removal Characteristics of Heavy Metal(loid)s using by Product from NoMix Toilet and its Characterization
  • Shim, Jaehong;Lim, Jeong-Muk;Kim, Jin-Won;Kim, Hae-Won;Oh, Byung-Taek;
  • School of Natural Resources, University of Nebraska-Lincoln;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;
  • NoMix toilet 에서 발생하는 부산물을 이용한 수용액내 (준)중금속 제거 특성 및 가능성 연구
  • 심재홍;임정묵;김진원;김해원;오병택;
  • 네브라스카 주립대학 천연자원학부;전북대학교 생명공학부;전북대학교 생명공학부;전북대학교 생명공학부;전북대학교 생명공학부;
Abstract
Struvite (MgNH4PO4 ⋅ 6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) precipitation in urine-separating toilets (NoMix toilets) causes severe maintenance problems and also reduce the phosphate and calcium content. Application of urine separating technique and extraction of by-products from human urine is a cost effective technique in waste water treatment. In this study, we extract urine calcite from human urine by batch scale method, using urease producing microbes to trigger the precipitation and calcite formation process. Extracted urine calcite (calcining at 800℃) is a potential adsorbent for removal of heavy metal(loid)s like (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+ and As3+) along with additional leaching analysis of total nitrogen (T-N), phosphate (T-P) and chemical oxygen demand (COD). The transformations of calcite during synthesis were confirm by characterization using XRD, SEM-EDAX and FT-IR techniques. In additional, the phosphate leaching potential and adsorbate (nitrate) efficiency in aqueous solution was investigated using the calcinedurine calcite. The results indicate that the calcite was effectively remove heavy metal(loid)s lead up to 96.8%. In addition, the adsorption capacity (qe) of calcite was calculated and it was found to be 203.64 Pb, 110.96 Cd, 96.02 Zn, 104.2 As, 149.54 Cu and 162.68 Ni mg/g, respectively. Hence, we suggest that the calcite obtain from the human urine will be a suitable absorbent for heavy metal(loid)s removal from aqueous solution.

Keywords: NoMix toilet;Heavy metal(loid)s;Urine calcite (UC);Precipitation;Complexation;

References
  • 1. Alexandratos, V.G., Elzinga, E.J., and Reeder, R.J., 2007, Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms, Geochim. Cos. Ac., 71(17), 4172-4187.
  •  
  • 2. Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., and Watanabe, M., 2015, Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells, J. Environ. Manage., 150, 103-110.
  •  
  • 3. Andrews, R.K., Blakeley, R.L., and Zerner, B.U.R.T., 1984, Urea and urease, Adv. Inorg. Biochem., 6, 245.
  •  
  • 4. Ao, W., Li, J., Yang, H., Zeng, X., and Ma, X., 2006, Mechanochemical synthesis of zinc oxide nanocrystalline, Powd. Tech., 168(3), 148-151.
  •  
  • 5. Argun, M.E. and Dursun, S., 2008, A new approach to modification of natural adsorbent for heavy metal adsorption, Bioresour. Technol., 99(7), 2516-2527.
  •  
  • 6. Askarinejad, A. and Morsali, A., 2008, Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method, Mater. Lett., 62(3), 478-482.
  •  
  • 7. Aziz, H.A., Adlan, M.N., and Ariffin, K.S., 2008, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: Post treatment by high quality limestone, Bioresour. Technol., 99(6), 1578-1583.
  •  
  • 8. Cai, G.B., Zhao, G.X., Wang, X.K., and Yu, S.H., 2010, Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water, J. Phys. Chem. C., 114(30), 12948-12954.
  •  
  • 9. Cölfen, H. and Antonietti, M., 1998, Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers, Langmuir, 14(3), 582-589.
  •  
  • 10. Colin, V.L., Villegas, L.B., and Abate, C.M., 2012, Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals, Inter. Biodeter. Biodegrad., 69, 28-37.
  •  
  • 11. Corbeil, M.C., 2004, Applications of X-ray diffraction in conservation science and Archaeometry, Adv. X-ray Anal., 47, 18-29.
  •  
  • 12. Du, Y., Lian, F., and Zhu, L., 2011, Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells, Environ. Pollut., 159(7), 1763-1768.
  •  
  • 13. Escher, B.I., Pronk, W., Suter, M.J.F., and Maurer, M., 2006, Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays, Environ. Sci. Technol., 40(16), 5095-5101.
  •  
  • 14. Garcıa-Sánchez, A. and Alvarez-Ayuso, E., 2002, Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters, Miner. Eng., 15(7), 539-547.
  •  
  • 15. Hong, S.C., Kim, M.S., and Chung, J.G., 2002, Adsorption characteristics of Pb (II) on calcite-type calcium carbonate by batch and continuous reactors, J. Ind. Eng. Chem., 8(4), 305-312.
  •  
  • 16. Kim, K.S., 2007, The present conditions and measures for ocean dumping of livestock excreta wastes in Korea, J. Kor. Soc. Mar. Environ. Saf., 13(4), 27-35.
  •  
  • 17. Latifian, M., Holst, O., and Liu, J., 2014, Nitrogen and phosphorus removal from urine by sequential struvite formation and recycling process, CLEAN-Soil Air Water, 42(8), 1157-1161.
  •  
  • 18. Logan, B. and Taffs, K.H., 2013, Relationship between diatoms and water quality (TN, TP) in sub-tropical east Australian estuaries, J. Paleolimnol., 50(1), 123-137.
  •  
  • 19. Lu, C., Qi, L., Cong, H., Wang, X., Yang, J., Yang, L., Zhang, D., Ma, J., and Cao, W., 2005, Synthesis of calcite single crystals with porous surface by templating of polymer latex particles, Chem. Mater., 17(20), 5218-5224.
  •  
  • 20. Madsen, L., 2001, Surface charge of calcite, In Encyclopedia of surface and colloid science (ed. P. Somasundaran), MarcelDekker Inc., 4982-4995.
  •  
  • 21. Marsili, E., Beyenal, H., Palma, L.D., Merli, C., Dohnalkova, A., Amonette, J.E., and Lewandowski, Z., 2007, Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite, Environ. Sci. Technol., 41(24), 8349-8354.
  •  
  • 22. Ministry of Environment (ME), Korea , 2010 Management manual of septic tank for sewage and human feces, Korea Environ., Clean Assoc., 19-422.
  •  
  • 23. Mobley, H.L.T. and Hausinger, R.P., 1989, Microbial ureases: Significance, regulation, and molecular characterization, Microbiol. Rev., 53(1), 85-108.
  •  
  • 24. Moon, D.H., Dermatas, D., and Menounou, N., 2004, Arsenic immobilization by calcium-arsenic precipitates in lime treated soils, Sci. Total Environ., 330(1), 171-185.
  •  
  • 25. Nassrallah-Aboukais, N., Boughriet, A., Laureyns, J., Aboukais, A., Fischer, J.C., Langelin, H.R., and Wartel, M., 1998, Transformation of vaterite into cubic calcite in the presence of copper (II) species, Chem. Mater., 10(1), 238-243.
  •  
  • 26. Pronk, W., Palmquist, H., Biebow, M., and Boller, M., 2006, Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine, Water Res., 40(7), 1405-1412.
  •  
  • 27. Roman-Ross, G., Cuello, G.J., Turrillas, X., Fernandez-Martinez, A., and Charlet, L., 2006, Arsenite sorption and co-precipitation with calcite, Chem. Geol., 233(3), 328-336.
  •  
  • 28. Sasaki, K., Qiu, X., Hosomomi, Y., Moriyama, S., and Hirajima, T., 2013, Effect of natural dolomite calcination temperature on sorption of borate onto calcined products, Micropor. Mesopor. Mater., 171, 1-8.
  •  
  • 29. Shirvani, M., Shariatmadari, H., Kalbasi, M., Nourbakhsh, F., and Najafi, B., 2006, Sorption of cadmium on palygorskite, sepiolite and calcite: equilibria and organic ligand affected kinetics, Colloid. Surf. A: Physicochem. Eng. Asp., 287(1), 182-190.
  •  
  • 30. Sø, H.U., Postma, D., Jakobsen, R., and Larsen, F., 2008, Sorption and desorption of arsenate and arsenite on calcite, Geochim. Cos. Ac., 72(24), 5871-5884.
  •  
  • 31. Stańczyk, K., Dziembaj, R., Piwowarska, Z., and Witkowski, S., 1995, Transformation of nitrogen structures in carbonization of model compounds determined by XPS, Carbon, 33(10), 1383-1392.
  •  
  • 32. Stuart, C.A., Van Stratum, E., and Rustigian, R., 1945, Further studies on urease production by Proteus and related organisms, J. Bacteriol., 49(5), 437.
  •  
  • 33. Sud, D., Mahajan, G., and Kaur, M.P., 2008, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review, Bioresour. Technol., 99(14), 6017-6027.
  •  
  • 34. Tarley, C.R.T. and Arruda, M.A.Z., 2004, Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents, Chemosphere, 54(7), 987-995.
  •  
  • 35. Taleb, M.F.A., Mahmoud, G.A., Elsigeny, S.M., and Hegazy, E.S.A., 2008, Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-g-N, N-dimethylamino ethylmethacrylate) graft copolymer, J. Hazard. Mater., 159(2), 372-379.
  •  
  • 36. Udert, K.M., Larsen, T.A., and Gujer, W., 2003, Biologically induced precipitation in urine-collecting systems, Water Sci. Technol. Water Supply, 3(3), 71-78.
  •  
  • 37. Wang, R., Li, H., Chang, F., Luo, J., Hanna, M.A., Tan, D., Hu, D., Zhang, Y., Song, B., and Yang, S., 2013, A facile, low-cost route for the preparation of calcined porous calcite and dolomite and their application as heterogeneous catalysts in biodiesel production, Catal. Sci. Technol., 3(9), 2244-2251.
  •  
  • 38. Wei, H., Shen, Q., Zhao, Y., Wang, D.J., and Xu, D.F., 2003, Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite, J. Cryst. Gr., 250(3), 516-524.
  •  
  • 39. Wei, S., Li, Y., Zhou, Q., Srivastava, M., Chiu, S., Zhan, J., and Sun, T., 2010, Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L., J. Hazard. Mater., 176(1), 269-273
  •  
  • 40. Wilson, E.V., Bushiri, M.J., and Vaidyan, V.K., 2010, Characterization and FTIR spectral studies of human urinary stones from Southern India, Spectrochim. Acta Pt. A: Mol. Biomol. Spectrosc., 77(2), 442-445.
  •  
  • 41. Yavuz, Ö., Guzel, R., Aydin, F., Tegin, I., and Ziyadanogullari, R., 2007, Removal of cadmium and lead from aqueous solution by calcite, Pol. J. Environ. Stud., 16, 467.
  •  
  • 42. Yoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D., and Ahniyaz, A., 2004, Hydrothermal conversion of calcite crystals to hydroxyapatite, Mater. Sci. Eng. C., 24(4), 521-525.
  •  
  • 43. Zachara, J.M., Cowan, C.E., and Resch, C.T., 1993, Implications to Metal Ion Concentrations in Groundwater, Metals Groundw., 37.
  •  

This Article

  • 2016; 21(1): 28-39

    Published on Feb 28, 2016

  • 10.7857/JSGE.2016.21.1.028
  • Received on Jul 14, 2015
  • Revised on Aug 5, 2015
  • Accepted on Oct 30, 2015