A siderophore-producing bacterium (i.e., Pseudomonas aeruginosa) capable of chelating Fe
3+ from its mineral form (i.e., iron oxides) was used to enhance As uptake by plants. Since As in soil is mainly associated with iron oxides, siderophore can play an important role in As mobilization through the dissolution of As-bearing iron oxides. A series of pot experiment using Pteris cretica showed that As removal by P. cretica with siderophore-producing bacteria addition increased more than three times compared to that without bacteria addition. Competition between indigenous bacteria and introduced bacteria (i.e., P. aeruginosa) was also observed, but such competition seemed not to be significant. This study suggests that enhanced-phytoremediation by siderophore-producing bacteria addition could be a visible option for longterm As removal in the forest area at the former Janghang smelter site.
Keywords: Former Janghang smelter;Phytoremediation;Siderophore;Arsenic;Pyrosequencing;