• Influence of Physicochemical Properties on Cesium Adsorption onto Soil
  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae;
  • Department of Environmental Engineering, Chonbuk National University;Department of Environmental Engineering, Chonbuk National University;Department of Environmental Engineering, Andong National University;Department of Environmental Engineering, Chonbuk National University;Department of Environmental Engineering, Chonbuk National University;
  • 토양의 물리화학적 특성이 세슘 흡착에 미치는 영향
  • 박상민;이제신;김영훈;이정선;백기태;
  • 전북대학교 환경공학과;전북대학교 환경공학과;안동대학교 환경공학과;전북대학교 환경공학과;전북대학교 환경공학과;
Abstract
Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.

Keywords: Cesium;Organic matter;Cation exchange capacity (CEC);Clay minerals;

References
  • 1. Askbrant, S., Melin, J., Sandalls, J., Rauret, G., Vallejo, R., Hinton, T., Cremers, A., Vandecastelle, C., Lewyckyj, N., Ivanov, Y.A., Firsakova, S.K., Arkhipov, N.P., and Alexakhin, R.M., 1996, Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout, J. Environ. Radioact., 31, 287-312.
  •  
  • 2. Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K.G., and Chorover, J., 2002, Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation, Environ. Sci. Technol., 36, 2670-2676.
  •  
  • 3. Carroll, D.L., Kemp, T.F., Bastow, T.J., and Smith, M.E., 2005, Solid-state NMR characterisation of the thermal transformation of a Hungarian white illite, Solid State Nucl. Magn. Reson., 28, 31-43.
  •  
  • 4. Cremers, A., Elsen, A., Depreter, P., and Maes, A., 1988, Quantitative-analysis of radiocesium retention in soils, Nature, 335, 247-249.
  •  
  • 5. Dumat, C., Quiquampoix, H., and Staunton, S., 2000, Adsorption of cesium by synthetic clay-organic matter complexes: Effect of the nature of organic polymers, Environ. Sci. Technol., 34, 2985-2989.
  •  
  • 6. Gommers, A., Thiry, Y., Vandenhove, H., Vandecasteele, C.M., Smolders, E., and Merckx, R., 2000, Radiocesium uptake by one-year-old willows planted as short rotation coppice, J. Environ. Qual., 29, 1384-1390.
  •  
  • 7. Grim, R.E., Bray, R.H., and Bradley, W.F., 2013. The Mica in Argillaceous Sediments: American Mineralogist. Literary Licensing, LLC.
  •  
  • 8. Hou, X.L., Fogh, C.L., Kucera, J., Andersson, K.G., Dahlgaard, H., and Nielsen, S.P., 2003, Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation, Sci. Total Environ., 308, 97-109.
  •  
  • 9. Hsu, C.N. and Chang, K.P., 1994, Sorption and desorption behavior of cesium on soil components, Appl. Radiat. Isot., 45, 433-437.
  •  
  • 10. Kato, H., Onda, Y., and Teramage, M., 2012, Depth distribution of Cs-137, Cs-134, and I-131 in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident, J. Environ. Radioact., 111, 59-64.
  •  
  • 11. Kim, Y., Cygan, R.T., and Kirkpatrick, R.J., 1996, Cs-133 NMR and XPS investigation of cesium adsorbed on clay minerals and related phases, Geochim. Cosmochim. Acta, 60, 1041-1052.
  •  
  • 12. Livens, F.R., Horrill, A.D., and Singleton, D.L., 1991, Distribution of radiocesium in the soil-plant systems of upland areas of Europe, Health Phys., 60, 539-545.
  •  
  • 13. Llano, A.Y., Benitez, A.H., and Gutierrez, M.G., 1998, Cesium sorption studies on Spanish clay materials, Radiochimica Acta, 82, 275-278.
  •  
  • 14. McKinley, J.P., Zachara, J.M., Heald, S.M., Dohnalkova, A., Newville, M.G., and Sutton, S.R., 2004, Microscale distribution of cesium sorbed to biotite and muscovite, Environ. Sci. Technol., 38, 1017-1023.
  •  
  • 15. Miranda-Trevino, J.C. and Coles, C.A., 2003, Kaolinite properties, structure and influence of metal retention on pH, Appl. Clay Sci., 23, 133-139.
  •  
  • 16. Mon, J., Deng, Y.J., Flury, M., and Harsh, J.B., 2005, Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane, Microporous Mesoporous Mater., 86, 277-286.
  •  
  • 17. Mukai, H., Hirose, A., Motai, S., Kikuchi, R., Tanoi, K., Nakanishi, T.M., Yaita, T., and Kogure, T., 2016, Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima, Scientific Reports, 6.
  •  
  • 18. Murray, H.H., 2000, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Appl. Clay Sci., 17, 207-221.
  •  
  • 19. Ohnuki, T. and Kozai, N., 1994, Sorption characteristics of radioactive Cesium and Strontium on Smectite, Radiochimica Acta, 66-7, 327-331.
  •  
  • 20. Qin, H.B., Yokoyama, Y., Fan, Q.H., Iwatani, H., Tanaka, K., Sakaguchi, A., Kanai, Y., Zhu, J.M., Onda, Y., and Takahashi, Y., 2012, Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique, Geochem. J., 46, 297-302.
  •  
  • 21. Rigol, A., Vidal, M., and Rauret, G., 1999, Effect of the ionic status and drying on radiocesium adsorption and desorption in organic soils, Environ. Sci. Technol., 33, 3788-3794.
  •  
  • 22. Saito, T., Makino, H., and Tanaka, S., 2014, Geochemical and grain-size distribution of radioactive and stable cesium in Fukushima soils: implications for their long-term behavior, J. Environ. Radioact., 138, 11-18.
  •  
  • 23. Sikalidis, C.A., Misaelides, P., and Alexiades, C.A., 1988, Cesium selectivity and fixation by vermiculite in the presence of various competing cations, Environ. Pollut., 52, 67-79.
  •  
  • 24. Stautnton, S., Dumat, C., and Zsolnay, A., 2002, Possible role of organic matter in radiocaesium adsorption in soils, J. Environ. Radioact., 58, 163-173.
  •  
  • 25. Wang, T.H., Li, M.H., Wei, Y.Y., and Teng, S.P., 2010, Desorption of cesium from granite under various aqueous conditions, Appl. Radiat. Isot., 68, 2140-2146.
  •  
  • 26. Wang, X.K., Dong, W.M., Li, Z., Du, J.Z., and Tao, Z.Y., 2000, Sorption and desorption of radiocesium on red earth and its solid components: relative contribution and hysteresis, Appl. Radiat. Isot., 52, 813-819.
  •  
  • 27. Wendling, L.A., Harsh, J.B., Ward, T.E., Palmer, C.D., Hamilton, M.A., Boyle, J.S., and Flury, M., 2005, Cesium desorption from lllite as affected by exudates from rhizosphere bacteria, Environ. Sci. Technol., 39, 4505-4512.
  •  
  • 28. Willms, C., Li, Z.H., Allen, L., and Evans, C.V., 2004, Desorption of cesium from kaolinite and illite using alkylammonium salts, Appl. Clay Sci., 25, 125-133.
  •  
  • 29. Zachara, J.M., Smith, S.C., Liu, C.X., McKinley, J.P., Serne, R.J., and Gassman, P.L., 2002, Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA, Geochim. Cosmochim. Acta, 66, 193-211.
  •  

This Article