• Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron
  • Kim, Cheolyong;Ahn, Jun-Young;Kim, Tae Yoo;Hwang, Inseong;
  • Department of Civil & Environmental Engineering, Pusan National University;Department of Civil & Environmental Engineering, Pusan National University;Department of Civil & Environmental Engineering, Pusan National University;Department of Civil & Environmental Engineering, Pusan National University;
  • 과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화
  • 김철용;안준영;김태유;황인성;
  • 부산대학교 사회환경시스템공학과;부산대학교 사회환경시스템공학과;부산대학교 사회환경시스템공학과;부산대학교 사회환경시스템공학과;
Abstract
The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

Keywords: Electrochemical oxidation;Persulfate;Nanosized zero-valent iron;Radicals;Phenol;

References
  • 1. An, D., Westerhoff, P., Zheng, M., Wu, M., Yang, Y., and Chiu, C., 2015, UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon, Water Res., 73, 304-310.
  •  
  • 2. Budaev S.L., Batoeva A.A., and Tsybikova B.A.. 2015, Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion, Minerals Eng., 81, 88-95.
  •  
  • 3. Chen, L., Jin, S., Fallgren, P.H., Swoboda-Colberg, N.G., Liu, F., and Colberg, P.J., 2012, Electrochemical depassivation of zerovalent iron for trichloroethene reduction, J. Hazard. Mater., 239, 265-269.
  •  
  • 4. Chen W. and Huang C., 2015, Mineralization of aniline in aqueous solution by electrochemical activation of persulfate, Chemosphere, 125, 175-181.
  •  
  • 5. Chen, W. and Su, Y., 2012, Removal of dinitrotoluenes in wastewater by sono-activated persulfate, Ultrason. Sonochem., 19(4), 921-927.
  •  
  • 6. Do, S., Kwon, Y., and Kong, S., 2010, Effect of metal oxides on the reactivity of persulfate/Fe (II) in the remediation of dieselcontaminated soil and sand, J. Hazard. Mater., 182(1), 933-936.
  •  
  • 7. Fang, G., Gao, J., Dionysiou, D.D., Liu, C., and Zhou, D., 2013, Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs, Environ. Sci. Technol., 47(9), 4605-4611.
  •  
  • 8. House, D.A., 1962, Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev., 62(3), 185-203.
  •  
  • 9. Hussain, I., Zhang, Y., Huang, S., and Du, X., 2012, Degradation of p-chloroaniline by persulfate activated with zero-valent iron, Chem. Eng. J., 203, 269-276.
  •  
  • 10. Johnson, R.L., Tratnyek, P.G., and Johnson, R.O., 2008, Persulfate persistence under thermal activation conditions, Environ. Sci. Technol., 42(24), 9350-9356.
  •  
  • 11. Klausen, J., Ranke, J., and Schwarzenbach, R.P., 2001, Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron, Chemosphere, 44(4), 511-517.
  •  
  • 12. Li, H., Wan, J., Ma, Y., Huang, M., Wang, Y., and Chen, Y., 2014a, New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions, Chem. Eng. J., 250, 137-147.
  •  
  • 13. Li, H., Wan, J., Ma, Y., Wang, Y., and Huang, M., 2014b, Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7, Chem. Eng. J., 237, 487-496.
  •  
  • 14. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004a, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55(9), 1213-1223.
  •  
  • 15. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004b, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55(9), 1225-1233.
  •  
  • 16. Liang, C. and Guo, Y., 2010, Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environ. Sci. Technol., 44(21), 8203-8208.
  •  
  • 17. Liang, C., Liang, C., and Chen, C., 2009, pH dependence of persulfate activation by EDTA/Fe (III) for degradation of trichloroethylene, J. Contam. Hydrol., 106(3), 173-182.
  •  
  • 18. Lin, H., Wu, J., and Zhang, H., 2013, Degradation of bisphenol A in aqueous solution by a novel electro/Fe3/peroxydisulfate process, Sep. Purif. Technol., 117, 18-23.
  •  
  • 19. Liu, H., Bruton, T.A., Doyle, F.M., and Sedlak, D.L., 2014, In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe (III)-and Mn (IV)-containing oxides and aquifer materials, Environ. Sci. Technol., 48(17), 10330-10336.
  •  
  • 20. Lu, X., Li, M., Tang, C., Feng, C., and Liu, X., 2012, Electrochemical depassivation for recovering Fe 0 reactivity by Cr (VI) removal with a permeable reactive barrier system, J. Hazard. Mater., 213, 355-360.
  •  
  • 21. Mao, R., Zhao, X., and Qu, J., 2014, Electrochemical reduction of bromate by a Pd modified carbon fiber electrode: kinetics and mechanism, Electrochim. Acta, 132, 151-157.
  •  
  • 22. Oh, S., Kang, S., and Chiu, P.C., 2010, Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron, Sci. Total Environ., 408(16), 3464-3468.
  •  
  • 23. Oturan, N., Wu, J., Zhang, H., Sharma, V.K., and Oturan, M.A., 2013, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials, Appl. Catal., B-Environ., 140, 92-97.
  •  
  • 24. Petri, B.G., Watts, R.J., Tsitonaki, A., Crimi, M., Thomson, N.R., and Teel, A.L., 2011, Fundamentals of ISCO using persulfate, In: Siegrist R.L., Crimi M., Simpkin T.J.(ed), In Situ Chemical Oxidation for Groundwater Remediation, Springer, United States, p.147-191.
  •  
  • 25. Rodriguez, S., Vasquez, L., Romero, A., and Santos, A., 2014, Dye oxidation in aqueous phase by using zero-valent iron as persulfate activator: kinetic model and effect of particle size, Ind. Eng. Chem. Res., 53(31), 12288-12294.
  •  
  • 26. Serrano, K., Michaud, P., Comninellis, C., and Savall, A., 2002, Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes, Electrochim. Acta, 48(4), 431-436.
  •  
  • 27. Song, H. and Carraway, E.R., 2005, Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions, Environ. Sci. Technol., 39(16), 6237-6245.
  •  
  • 28. Sopaj F., Rodrigo M.A., Oturan N., Podvorica F.I., Pinson J., and Oturan M.A., 2015, Influence of the anode materials on the electrochemical oxidation efficiency. application to oxidative degradation of the pharmaceutical amoxicillin, Chem Eng J., 262, 286-294.
  •  
  • 29. Wac awek, S., Antos, V., Hrabak, P., ernik, M., and Elliott, D., 2016, Remediation of hexachlorocyclohexanes by electrochemically activated persulfates, Environ. Sci. Pollut. R., 23(1), 765-773.
  •  
  • 30. Waldemer, R.H., Tratnyek, P.G., Johnson, R.L., and Nurmi, J.T., 2007, Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products, Environ. Sci. Technol., 41(3), 1010-1015.
  •  
  • 31. Wu, J., Zhang, H., and Qiu, J., 2012, Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2/peroxydisulfate process, J. Hazard. Mater., 215, 138-145.
  •  
  • 32. Yuan, S., Liao, P., and Alshawabkeh, A.N., 2013, Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater, Environ. Sci. Technol., 48(1), 656-663.
  •  

This Article