• Hydrogeochemical Evaluation of Crystalline bedrock Grondwater in a Coastal Area using Principal Component Analysis
  • Lee, Jeong-Hwan;Yoon, Jeong Hyoun;Cheong, Jae-Yeol;Jung, Haeryong;Kim, Soo-Gin;
  • Korea Radioactive Waste Agency;Korea Radioactive Waste Agency;Korea Radioactive Waste Agency;Korea Radioactive Waste Agency;Korea Radioactive Waste Agency;
  • 주성분 분석을 이용한 해안지역 결정질 기반암 지하수의 수리지구화학적 평가
  • 이정환;윤정현;정재열;정해룡;김수진;
  • 한국원자력환경공단;한국원자력환경공단;한국원자력환경공단;한국원자력환경공단;한국원자력환경공단;
Abstract
In this study, the evolution and origin of major dissolved constituents of crystalline bedrock groundwater in a coastal area were evaluated using multivariate statistical and groundwater quality analyses. The groundwater types mostly belonged to the $Na(Ca)-HCO_3$ and $Ca-HCO_3$ types, indicating the effect of cation exchange. Stable isotopes of water showed two areas divided by first and secondary evaporative effects, indicating a pattern of rapid hydrological cycling. Saturation indices of minerals showed undersaturation states. Thus, the degree of evolution of groundwater is suggested as in the low to intermediate stage, based on field and laboratory analytical conditions. According to the principal component analysis (PCA) results, the chemical components of EC, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $HCO_3{^-}$, $SO{_4}^{2-}$ (PCA 1), $F^-$ (PCA 3), $SiO_2$ (PCA 4), and $Fe^{2+}$ (PCA 5) are derived from various water-rock interactions. However, $NO_3{^-}$, $Na^+$, and $Cl^-$ (PCA 2) represented the chemical characteristics of both anthropogenic sources and natural sea spray.

Keywords: Groundwater type;Principal component analysis;Water-rock interaction;Evolution of groundwater;Sea spray;

References
  • 1. Aravena, R., Suzuki, O., and Polastri, A., 1989, Coastal fogs and their relation to groundwater in the IV region of northern Chile, Chem. Geol., 79(1), 83-91.
  •  
  • 2. Choi, B.-Y., Kim, G.-Y., Koh, Y.-K., Shin, S.-H., Yoo, S.-W., and Kim, D.-H., 2008, Geochemical characteristics of a LILW repository I. Groundwater, J. Nucl. Fuel Cycle Waste Technol., 6(4), 297-306.
  •  
  • 3. Choo, S.-H. and Chi, S.-J., 1992, Stable isotope study on surface and ground waters, Korea Institute of Geoscience and Mineral Resources, 47p.
  •  
  • 4. Clark, I. and Fritz, P., 1997, Environmental Isotopes in Hydrogeology, CRC Press, USA.
  •  
  • 5. Gascoyne, M. and Laaksoharju, M., 2008, High-level radioactive waste disposal in Sweden: Hydrogeochemical characterisation and modelling of two potential sites, Appli. Geoch., 23(7), 1745-1746.
  •  
  • 6. Hahn, J., 2000, Groundwater Envrionment and Pollution, Pakyoungsa, Seoul, Korea.
  •  
  • 7. Hamm, S.-Y., Kim, K.S., Lee, J.-H., Cheong, J.-Y., Sung, I.H., and Jang, S., 2006, Characteristics of groundwater quality in Sasan industrial area, Busan metropolitan city, Econ. Environ. Geol., 39(6), 753-770.
  •  
  • 8. Hwang, J.H., Kihm, Y.H., Kim, Y.B., and Song, K.Y., 2007, Teriary hydroexplosion at Bonggil-ri, Yangbuk-myeon, Gyeongju, J. Geol. Soc. Korean, 43(4), 453-462.
  •  
  • 9. IAEA (International Atomic Energy Agency), 2003, Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes, IAEA Technical Report series no. 413, 80p.
  •  
  • 10. Jeong, C.H., Kim, M.S., Lee, Y.J., Han, J.S., Jang, H.G., and Jo, B.U., 2011, Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheongwon area, J. Eng. Geol., 21(2), 163-178.
  •  
  • 11. Ji, S.-H., Park, K.W., Kim, K.-S., and Kim, C., 2008, Analysis of the statistical properties for the background fractures in the LILW disposal site of Korea, J. Nucl. Fuel Cycle Waste Technol., 6(4), 257-263.
  •  
  • 12. Joreskog, K.G., Klovan, J.E., and Reyment, R.A., 1976, Geological factor analysis, Elsevier Scientific Publishing Company, Amsterdam. Oxford, New York.
  •  
  • 13. Kim, G.Y., Koh, Y.K., Choi, B.-Y., Shin, S.-H., and Kim, D.H., 2008, Geochemical characteristics of the Gyeongju LILW repository : II. Rock and Mineral, J. Nucl. Fuel Cycle Waste Technol., 6(4), 307-327.
  •  
  • 14. Kim, K.-S., Kim, C., Bae, D.-S., Ji, S.-H., and Yoon, S-T., 2008, Hydrogeological characteristics of the LILW disposal site, J. Nucl. Fuel Cycle Waste Technol., 6(4), 245-255.
  •  
  • 15. Ko, K.S., Kim, Y., Koh, D.C., Lee, K.S., Lee, S.G., Kang, C.H., Seong, H.J., and Park, W.B., 2005, Hydrogeochemical characterization of groundwater in Jeju Island using pricipal component analysis and geostatistics, Econ. Environ. Geol., 38(4), 435-450.
  •  
  • 16. Ko, K.S., Ahn, H., Suk, H., Lee, J.S., and Kim H.S., 2008, Hydrogeochemistry and statistical analysis of water quality for small potable water supply system in Nonsan Area, J. Soil Groundwater Evniron., 13(6), 72-84.
  •  
  • 17. Lee, J.-H., Jung, H., Cheong, J-Y., Park, J.-W., and Yun S.-T., 2014, Evaluation of groundwater quality in crystalline bedrock site for disposal of radioactive waste, J. Nucl. Fuel Cycle Waste Technol., 12(4), 275-286.
  •  
  • 18. Lee, J.-H., Jung, H., Yun, S.-T., Kim, J.-Y., and Cho, S.-I, 2014, Evaluation of groundwater flow pattern at the site of crystalline rock using time series and factor analyses, J. Soil Groundwater Environ., 19(4), 12-22.
  •  
  • 19. Lee, J.-H., Jung, H., Park, J.-W., Yoon, J.H., Cheong, J.-Y., Park, S.J., and Jun, S.-C., 2016, Evaluation of percolation rate of bedrock aquifer in coastal area, J. Nucl. Fuel Cycle Waste Technol., 14(1), 21-33.
  •  
  • 20. Liu, C.W., Jang, C.S., and Liao, C.M., 2004, Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Tiwan), Sci. Tot. Environ., 321(1-3), 173-188.
  •  
  • 21. Mumford, K., MacGregor, J.F., Dickson, S.E., and Frappa, R.H., 2007, Multivariate analysis of groundwater and soil data from waste disposal site, Ground Water Monitoring and Remediation, 27(1), 92-102.
  •  
  • 22. Oh, C.-S. and Kim, J.-M., 2008, Three-dimensional numerical simulation of groundwater flow and salt and radionuclide trasport at a low and intermediate level radioactive waste disposal site in Gyeongju, Korea, J. Geol. Soc. Korean, 44(4), 489-505.
  •  
  • 23. Posiva Oy., 2011, Olkiluoto Site Description 2011, Posiva 2011-02, Eurajoki, Finland, 1039p.
  •  
  • 24. SAS Institute Inc., 1995, SAS Version 9.1.3 Cary, North Carolina, SAS Institute Inc.
  •  
  • 25. SKB (Svensk Karnbranslehantering AB), 2002, Hydrogeochemical site descriptive model - a strategy for the model development during site investigations, R-02-49, Stockholm, Sweden, 63p.
  •  

This Article