Although various methods have been investigated for treatment of crude oil contaminated soil, more researches are still required to preserve soil environment. This study investigated the potential utility of subcritical water in remediation of crude oil contaminated soil under various experimental conditions including temperature (
$150-300^{\circ}C$), flow rate (1.0-2.0 mL/min) and extraction time (60-120 min). The removal rate of crude oil gradually increased with increasing temperature and time. After treatment at
$200^{\circ}C$ and
$300^{\circ}C$ for 60 min, the remaining concentration of crude oil met the Kuwait standard clean-up level (10,000 mg/kg) and the Korean standard level (2,000 mg/kg), respectively. The removal efficiency of crude oil increased from 77.8% to 88.4% with increasing extraction time from 60 to 120 min at
$250^{\circ}C$. A decreasing rate of oil removal was observed as flow rate increased, possibly due to channeling flow occurred within the soil body at higher flow rate condition. Overall, the results revealed that subcritical water extraction process could be feasible for remediation of crude oil contaminated soil, and the relative effect of parameters on the oil removal was in the order of temperature > time > flow rate.
Keywords: Crude oil;Contaminated soil;Remediation;Subcritical water Extraction;