• Assessment of Groundwater Contamination Vulnerability in Miryang City, Korea using Advanced DRASTIC and fuzzy Techniques on the GIS Platform
  • Chung, Sang Yong;Elzain, Hussam Eldin;Senapathi, Venkatramanan;Park, Kye-Hun;Kwon, Hae-Woo;Yoo, In Kol;Oh, Hae Rim;
  • Department of Earth & Environmental Sciences, Pukyong National University;Division of Earth Environmental System Science, Pukyong National University;Department for Management of Science and Technology Development, Ton Duc Thang University;Department of Earth & Environmental Sciences, Pukyong National University;Exploration Technology Team, Korea Mineral Resources Corporation;Exploration Technology Team, Korea Mineral Resources Corporation;Department of Earth & Environmental Sciences, Pukyong National University;
  • 개선된 DRASTIC 기법과 퍼지기법을 이용한 밀양지역 지하수오염 취약성 평가
  • 정상용;후삼 엘딘 엘자인;벤카트라마난 세나파티;박계헌;권해우;유인걸;오해림;
  • 부경대학교 지구환경과학과;부경대학교 지구환경시스템과학부;베트남 통덕탕대학교 과학기술개발관리학과;부경대학교 지구환경과학과;한국광물자원공사 탐사기술팀;한국광물자원공사 탐사기술팀;부경대학교 지구환경과학과;
Abstract
The purpose of this study is to improve the Original DRASTIC Model (ODM) for the assessment of groundwater contamination vulnerability on the GIS platform. Miryang City of urban and rural features was selected for the study area to accomplish the research purpose. Advanced DRASTIC Model (ADM) was developed adding two more DRASTIC factors of lineament density and landuse to ODM. The fuzzy logic was also applied to ODM and ADM to improve their ability in evaluating the groundwater contamination vulnerability. Although the vulnerability map of ADM was a little simpler than that of ODM, it increased the area of the low vulnerability sector. The groundwater vulnerability maps of ODM and ADM using DRASTIC Indices represented the more detailed descriptions than those from the overlap of thematic maps, and their qualities were improved by the application of fuzzy technique. The vulnerability maps of ODM, ADM and FDM was evaluated by NO3-N concentrations in the study area. It was proved that ADM including lineament density and landuse factors produced a more reliable groundwater vulnerability map, and fuzzy ADM (FDM) made the best detailed groundwater vulnerability map with the significant statistical results.

Keywords: Groundwater contamination vulnerability;Original DRASTIC model;Advanced DRASTIC model;Fuzzy DRASTIC model;$NO_3-N$ concentrations;

References
  • 1. Abdullah, T.O., Ali, S.S., Al-Ansari, N.A., and Knutsson, S., 2015, Groundwater Vulnerability Mapping Using Lineament Density on Standard DRASTIC Model: Case Study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq, Engineering, 7, 644-667.
  •  
  • 2. Aller, L., T. Bennett, Lehr, J.H., Petty, R., and Hackett, G., 1987, DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings, U.S. Environmental Protection Agency, Ada, Oklahoma 74820.
  •  
  • 3. Baghapour, M.A., Nobandegani, A.F., Talebbeydokhti, N., Bagherzadeh, S., Nadiri, A.A., Gharekhani, M., and Chitsazan, N., 2016, Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran, Journal of Environmental Health Science and Engineering, 14(1), 13 (online).
  •  
  • 4. Baalousha, H., 2010, Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand, Agricultural Water Management, 97(2), 240-246.
  •  
  • 5. Barry, M.E. and Wayne, L., 1990, A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC, J. Soil and Water Conservation, 45(2), 242-245.
  •  
  • 6. Barzegar, R., Moghaddam, A.A., and Baghban, H., 2016, A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran, Stochastic Environmental Research and Risk Assessment, 30(3), 883-899.
  •  
  • 7. Boughriba, M., Barkaoui, A.E., Zarhloule, Y., Lahmer, Z., El Houadi, B., and Verdoya, M., 2010, Groundwater vulnerability and risk mapping of the Angad transboundary aquifer using DRASTIC index method in GIS environment, Arabian Journal of Geosciences, 3(2), 207-220.
  •  
  • 8. Casas, A.M., Cortes, A.L., Maestro, A., Soriano, M.A., Riaguas, A., and Bernal, J., 2000, LINDES: A program for lineament length and density analysis, Computers & Geosciences, 26, 1011-1022.
  •  
  • 9. Chitsazan, M. and Akhtari, A., 2009, A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran, Water Resour. Manage., 23, 1137-1155.
  •  
  • 10. Choi, S., Moon, W.M., and Choi, S.-G., 2000, Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea, Geosciences J., 4(2), 43-52.
  •  
  • 11. Choi, B.-S. and Ahn J.-G., 1998, A study on the estimation of reginal groundwater recharge ratio, J. Kor. Soc. Groundwater Environment, 5(2), 57-65.
  •  
  • 12. Cho, S.-H., Cho, M., Moon, S.H., Kim, Y., and Lee, K.-S., 2008, Estimation of groundwater recharge in a district-scale using $^{18}O$ tracer, J. Geol. Soc. Korea, 44(3), 331-340.
  •  
  • 13. Demico, R.V. and Klir G.J. 2004, Fuzzy logic in geology, Elsevier, Academic Press.
  •  
  • 14. Dixon, B., 2004. Prediction of groundwater vulnerability using integrated GIS-based neuro-fuzzy techniques, J. of Spatial Hydrology, 4(2), 1-38.
  •  
  • 15. Dixon, B., 2005a, Applicability of neuro-fuzzy techniques in predicting groundwater vulnerability: a GIS-based sensitivity analysis, J. of Hydrology, 309, 17-38.
  •  
  • 16. Dixon, B., 2005b, Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool, J. of Applied Geography 25, 327-347.
  •  
  • 17. Ercanoglu, M. and Gokceoglu, C., 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Engineering Geology, 75, 229-250.
  •  
  • 18. Evans, B.M. and Myers, W.L., 1990, A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC, J. of Soil and Water Conservation, 45(2), 242-245.
  •  
  • 19. Fijani, E., Nadiri, A.A., Moghaddam, A.A., Tsai, F.T.C., and Dixon, B., 2013, Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran, J. of Hydrology, 503, 89-100.
  •  
  • 20. Fritch, T.G., Mcknight, C.L., Yelderman Jr, J.C., and Arnold, J.G., 2000, An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach, Environmental Management, 25(3), 337-345.
  •  
  • 21. Gemitzi, A., Petalas, C., Tsihrintzis, V.A., and Pisinaras, V., 2006, Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques, Environmental Geology, 49(5), 653-673.
  •  
  • 22. Hahn, J., 1994, The best management practice and protection strategies of groundwater resources of USA, Kor. J. Engineering Geol., 4(1), 57-77.
  •  
  • 23. Hahn, J., Hahn, K.S., Lee, Y.D., and Yoo, D.H., 1990, An assessment of groundwater pollution potential of a proposed petrochemical plant site in Ulsan, South Korea, J. Kor. Inst. Mining Geol., 23(4), 425-452.
  •  
  • 24. Ham, S.Y., Cheong, J.Y., Kim, M.J., Kim, I.S., and Hwang, H.S., 2004, Assessing groundwater vulnerability using DRASTIC method and groundwater quality in Changwon city, Kor. Soc. Econ. Environ. Geol., 37(6), 631-645.
  •  
  • 25. Hamutoko, J.T., Wanke, H., and Voigt, H.J., 2016, Estimation of groundwater vulnerability to pollution based on DRASTIC in the Niipele sub-basin of the Cuvelai Etosha Basin, Namibia, Physics and Chemistry of the Earth, Parts A/B/C, 93, 46-54.
  •  
  • 26. Jo, S.B., Min, K.D., Woo, N.C., and Lee, S.R., 1999, A study on groundwater contamination potential of Pyungtaek-Gun area, Kyunggi-Do using GIS, J. Soil & Groundwater Environ., 6(2), 87-94.
  •  
  • 27. Jo, S.B. and Shon, H., 2004, A study on the prediction of groundwater contamination using GIS, J. Kor. Geophysical Soc., 7(2), 121-134.
  •  
  • 28. Kang, J. and Park, E., 2010, A comparative application of DRASTIC and SINTACS models for the assessment of groundwater vulnerability of Buyeo area, Korean J. Soil & Groundwater Environ., 15(5), 32-39.
  •  
  • 29. Kim, G.B., Lee, J.Y., and Lee, K.K., 2004, Application of representative elementary area (REA) to lineament density analysis for groundwater implications, Geosciences J., 8(1), 27-42.
  •  
  • 30. Kim, G.B., 2008, Consideration of trends and applications of groundwater vulnerability assessment methods in South Korea, J. Soil & Groundwater Environ., 13(6), 1-16.
  •  
  • 31. Kim, J.Y. and Park, H.-J., 2013, A Comparative study of fuzzy relationship and ANN for landslide susceptibility in Pohang area, Kor. Soc. Econ. Environ. Geol., 46(4), 301-312.
  •  
  • 32. Kim, Y.J., Sung, I.H., Kim, W.Y., Yu, I.H., and Park, J.D., 1993, A GIS technology for groundwater protection, Kor. J. Engineering Geol., 3(3), 253-266.
  •  
  • 33. Koo, M.H., Kim, T.-K., Kim, S.-S., Chung, S.-R., Kang, I.-O., Lee, C.-J., and Kim, Y., 2013, Estimating groundwater recharge using the water-table fluctuation method: Effect of stream-aquifer interactions, Korean J. Soil & Groundwater Environ., 18(5), 65-76.
  •  
  • 34. Lathamani, R., Janardhana, M.R., Mahalingam, B., and Suresha, S., 2015, Evaluation of aquifer vulnerability using drastic model and GIS: a case study of Mysore city, Karnataka, India, Aquatic Procedia, 4, 1031-1038.
  •  
  • 35. Lee, H., Park, E., Kim, K., and Park, K.H., 2008, A joint application of DRASTIC and numerical groundwater flow model for the assessment of groundwater vulnerability of Buyeo-Eup area, Kor. J. Soil & Groundwater Environ., 13(1), 77-91.
  •  
  • 36. Lee, K.H., 2004, First Course on Fuzzy, Theory and Applications, Springer, Berlin, p.335.
  •  
  • 37. Lee, M.-J., Hyun, Y., Kim, Y., and Hwang, S.-I., 2013, Priority assessment for groundwater contamiantion management using analytic hierarchy process (AHP) and GIS approach, Kor. J. Soil & Groundwater Env., 18(5), 26-38.
  •  
  • 38. Lee, S.R. and Kim Y.J., 1996, Analysis of groundwater pollution potential and risk using DRASTIC SYSTEM, J. GIS Ass. Korea, 4(1), 1-11.
  •  
  • 39. Lee, S.R. and Choi, S.H., 1997, Groundwater pollution susceptibility assessment of Younggwang area using GIS technique, Kor. J. Soil & Groundwater Environ., 4(4), 223-230.
  •  
  • 40. Min, K.-D., Lee, Y.-H., Lee, S.-R., Kim, Y.-J., and Hahn, J.-S., 1996, Analysis of groundwater polution potential and development of graphic user interface using DRASTIC system, J. Kor. Soc. Groundwater Environ., 3(2), 101-109.
  •  
  • 41. Miryang City, General statistical Data of Miryang City, http://www.miryang.go.kr [accessed 18.04.03.]
  •  
  • 42. MOCT.KOWACO, 2003, Report on groundwater basic investigation in Miryang city.
  •  
  • 43. MOLTM.K-Water, 2012, Repot on national groundwater management plan (2012-2021).
  •  
  • 44. Moratalla, A., Gomez-Alday, J.J., Sanz, D., Castano, S., and De Las Heras, J., 2011, Evaluation of a GIS-Based integrated vulnerability risk assessment for the mancha oriental system (SE Spain), Water Resources Management, 25(14), 3677-3697.
  •  
  • 45. Nadiri, A.A., 2015, Application of artificial intelligence methods in geosciences and hydrology, OMICS Publication, p.124.
  •  
  • 46. Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S., and Moghaddam, A.A., 2017, Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM), Science of the Total Environment, 574, 691-706.
  •  
  • 47. National Groundwater Information Center (NGIC), http://www.gims.go.kr, Groundwater of Miryang City [accessed 18. 06.11]
  •  
  • 48. Park, C.-K., 1996, Estimation of the available amount of groundwater in South Korea: 1. Development of the method, J. Kor. Soc. Ground. Envron., 3(1), 15-20.
  •  
  • 49. Park, H.-J., 2008, Evaluation of the probability of failure in rock slope using fuzzy reliability analysis, J. Kor. Soc. Econ. Environ. Geol., 41(6), 763-771.
  •  
  • 50. Park, N.-W., Chi, K.-H., and Kwon, B.-D., 2005, Application of fuzzy information representation using frequency ratuo and nonparametric density estimation to mutiple-source spatial data fusion for landslide hazard mapping, J. Kor. Earth Sci. Soc., 26(2), 114-128.
  •  
  • 51. Park, N.-W., Chi, K.-H., and Kwon, B.-D., 2004, Classification of multi-sensor remote sensing images using fuzzy logic fusion and iterative relaxation labeling, Kor. J. Remote Sensing, 20(4), 275-288.
  •  
  • 52. Piscopo, G., 2001, Groundwater vulnerability map, explanatory notes-Castlereagh catchment, Parramatta NSW: Australia NSW Department of Land and Water Conservation.
  •  
  • 53. Secunda, S., Collin, M.L., and Melloul, A.J., 1998, Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region, J. of Environmental Management, 54(1), 39-57.
  •  
  • 54. Senapathi, V., Chung, S.Y., Rajesh, R., Lee, S.Y., Ramkumar, T., and Prasanna, M.V., 2015, Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: a case study of Dalcheon in Ulsan City, Korea, Environ. Sci. and Pollut. Resear., 22(15),11209-11223.
  •  
  • 55. Senapathi, V., Chung, S.Y., Selvam, S., Lee, S.Y., and Elzain, H.E., 2017, Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS, Environ. Sci. and Pollut. Resear., 24(30), 23679-23693.
  •  
  • 56. Sener, E., Sener, S., and Davraz, A., 2009. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey), Hydrogeology J., 17(8), 2023-2035.
  •  
  • 57. Shon, Howoong, 2001, A study on the prediction of groundwater contamination using the GIS in Hwanam 2 sector, Gyeonggi Province, Korea, Kor. Soc. Geophysics, 4(4), 267-285.
  •  
  • 58. Woo, N.C., 1994, Introduction to DRASTIC: a method for groundwater vulnerability assessment, Kor. J. Econ. Environ. Geol., 27(6), 611-612.
  •  
  • 59. Zadeh, L.A., 1965, Fuzzy sets, Information Control, 8(3), 338-353.
  •  
  • 60. Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L., and Tarhouni, J., 2016, Groundwater vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC index method in GIS environment, Groundwater for Sustainable Development, 2, 169-181.
  •  

This Article