• Mobility of Microplastics in Subsurface Environments: Current Knowledge and Perspectives
  • Kim, Youn-Tae;Han, Weon Shik;Yoon, Hye-On;
  • Institute of Natural Sciences, Yonsei University;Department of Earth System Sciences, Yonsei University;Korea Basic Science Institute (KBSI);
  • 지중환경에서 미세플라스틱의 이동성에 대한 고찰
  • 김연태;한원식;윤혜온;
  • 연세대학교 자연과학연구원;연세대학교 지구시스템과학과;한국기초과학지원연구원;
Abstract
Plastics have become essential materials in human life for several decades. Meanwhile, the inadvertent spread of plastic debris from the use of many plastic products has raised global environmental concerns. The risk of microplastics in subsurface environment has received little attention because soil is considered to confine microplastics within the matrix. However, the concentration of microplastics in soil unavoidably increased as a result of an increase in plastic production and use. Based on lab experiments, several researches claimed that microplastics possibly penentrate soil layers. Recently, a few researches reported the occurrence of microplastics in groundwater. This study reviewed the recent reports of microplastic occurrences in soil and groundwater, and the modeling studies for simulating transport of microplastics. Additionally, the difficulties and limits in microplastics researches in soil and groundwater are discussed. Finally, several perspectives on microplastic studies in subsurface environment are suggested.

Keywords: Plastic;Microplastics;Soil;Groundwater;Transport;

References
  • 1. Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., and Muhammad, S., 2018, Biodegradation of plastics: current scenario and future prospects for environmental safety, Environ. Sci. Pollut. Res., 25, 7287-7298.
  •  
  • 2. Alimi, O.S., Budarz, J.F., Hernandez, L.M., and Tufenkji, N.T., 2018, Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport, Environ. Sci. Technol., 52, 1704-1724.
  •  
  • 3. Blasing, M. and Amelung, W., 2018, Plastics in soil: Analytical methods and possible sources, Sci. Total Environ., 612, 411-435.
  •  
  • 4. Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., and Yates, S.R., 2003, Modeling colloid attachment, straining, and exclusion in saturated porous media, Environ. Sci. Technol., 37, 2242-2250.
  •  
  • 5. Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., and Yates, S.R., 2006, Significance of straining in colloid deposition: Evidence and implications, Water Resour. Res., 42, W12S15.
  •  
  • 6. Bradford, S.A., Torkzaban, S., Leij, F., Simunek, J., and van Genuchten, M.T., 2009, Modeling the coupled effects of pore space geometry and velocity on colloid transport and retention, Water Resour. Res., 45, W02414.
  •  
  • 7. Bradford, S.A. and Leij, F.J., 2018, Modeling the transport and retention of polydispersed colloidal suspensions in porous media, Chem. Eng. Sci., 192, 972-980.
  •  
  • 8. Chae, Y. and An, Y.J., 2018, Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review, Environ. Pollut., 240, 387-395.
  •  
  • 9. Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., and Geissen, V, 2019, Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal, Sci. Total Environ., 671, 411-420.
  •  
  • 10. DeNovio, N.M., Saiers, H.E., and Ryan, H.N., 2004, Colloid movement in unsaturated porous media: Recent advances and future directions, Vadose Zone J., 3, 338-351.
  •  
  • 11. Dong, Z., Qiu, Y., Zhang, W., Yang, Z., and Wei, L., 2018, Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater, Water Res., 143, 518-526.
  •  
  • 12. Eo, S., Hong, S.H., Song, Y.K., Lee, J., Lee, J., and Shin, W.J., 2018, Abundance, composition, and distribution of microplastics larger than $20{\mu}m$ in sand beaches of South Korea, Environ. Pollut., 238, 894-902.
  •  
  • 13. Fuller, S. and Gautam, A., 2016, A procedure for measuring microplastics using pressurized fluid extraction, Environ. Sci. Technol., 50, 5774-5780.
  •  
  • 14. G20, 2017, G20 Action Plan on Marine Litter, Hamburg 2017 G20, Germany.
  •  
  • 15. Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., and Purnell, P., 2018, An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling, J. Haz. Mater., 344, 179-199.
  •  
  • 16. He, D., Luo, Y., Lu, S., Liu, M., Song, Y., and Lei, L., 2018, Microplastics in soils: Analytical methods, pollution characteristics and ecological risks, Trac-Trends Anal. Chem., 109, 163-172.
  •  
  • 17. He, J., Wang, D., and Zhou, D., 2019, Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating, Sci. Total Environ., 648, 102-108.
  •  
  • 18. Hodson, M.E., Duffus-Hodson, C.A., Clark, A., Prendergast-Miller, M.T., and Thorpe, K.L., 2017, Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrate, Environ. Sci. Technol., 51, 4714-4721.
  •  
  • 19. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., and Svendsen, C., 2017, Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Total Environ., 586, 127-141.
  •  
  • 20. Huffer, T., Praetorius, A., Wagner, S., van der Kammer, F., and Hofmann, T., 2017, Microplastic exposure assessment in aquatic environments: Learning from similarities and differences to engineered nanoparticles, Environ. Sci. Technol., 51, 2499-2507.
  •  
  • 21. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., and Law, K.L., 2015, Plastic waste inputs from land into the ocean, Science, 347, 768
  •  
  • 22. Jang, M., Shim, W.J., Han, G.M., Rani, M., Song, Y.K., and Hong, S.H., 2016, Styrofoam debris as a source of hazardous additives for marine organisms, Environ. Sci. Technol., 50, 4951-4960.
  •  
  • 23. Kim, K.-J., Lee, H.-S., and Kim, Y.-J., 2017, Distribution of microplastics on side of pavement in M city, J. Kor. Soc. Urban Environ., 17(4), 419-423.
  •  
  • 24. Kim, S.W. and An, Y.-J., 2019, Soil microplastics inhibit the movement of springtail species, Environ. Int., 126, 699-706.
  •  
  • 25. Koelmans, A.A., Nor, N.H.M., Hermsen, E., Kooi, M., Mintenig, S.M., and De France, J., 2019, Microplastics in freshwaters and drinking water: Critical review and assessment of data quality, Water Res., 155, 410-422.
  •  
  • 26. Lazar, A.N., Butterfield, D., Futter, M.N., Rankinen, K., Thouvenot-Korppoo, M., Jarritt, N., Lawrence, D.S.L., Wade, A.J., and Whitehead, P.G., 2010, An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modification and implications for fisheries, Sci. Total Environ., 408, 2555-2566.
  •  
  • 27. Lehner, R., Weder, C., Petri-Fink, A., and Rothen-Rutishauser, B., 2019, Emergence of nanoplastic in the environment and possible impact on human health, Environ. Sci. Technol., 53, 1748-1765.
  •  
  • 28. Li, S., Liu, H., Gao, R., Abdurahman, A., Dai, J., and Zeng, F., 2018, Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter, Environ. Pollut., 237, 126-132.
  •  
  • 29. Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., and He, D., 2018, Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China, Environ. Pollut., 242, 855-862.
  •  
  • 30. Lu, S., Zhu, K., Song, W., Song, G., Chen, D., Hayat, T., Alharbi, N.S., Chen, C., and Sun, Y., 2018, Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions, Sci. Total Environ., 630, 951-959.
  •  
  • 31. Lv, W., Zhou, W., Lu, S., Huang, W., Yuan, Q., Tian, M., Lv, W., and He, D., 2019, Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China, Sci. Total Environ., 652, 1209-1218.
  •  
  • 32. Mintenig, S.M., Loder, M.G.J., Primpke, S., and Gerdts, G., 2019, Low numbers of microplastics detected in drinking water from ground water sources, Sci. Total Environ., 648, 631-635.
  •  
  • 33. Ng, E.L., Lwanga, E.H., Eldridge, S.M., Johnston, P., Hu, H.W., Geissen, V., and Chen, D., 2018, An overview of microplastic and nanoplastic pollution in agroecosystems, Sci. Total Environ., 627, 1377-1388.
  •  
  • 34. Nizzetto, L., Futter, M., and Langaas, S., 2016a, Are agricultural soils dumps for microplastics of urban origin?, Environ. Sci. Technol., 50, 10777-10779.
  •  
  • 35. Nizzetto, L., Bussi, G., Futter, M.N., Butterfield, D., and Whitehead, P.G., 2016b, A theoretical assessment of microplastic transport in river catchments and their retention by soil and river sediments, Environ. Sci. -Process Impacts, 18, 1050-1059.
  •  
  • 36. Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., and Pivokonsky, M., 2019, Microplastics in dringking water treatment-Current knowledge and research needs, Sci. Total Environ., 667, 730-740.
  •  
  • 37. O'Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W.M., and Hou, D., 2019, Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles, Environ. Pollut., 249, 527-534.
  •  
  • 38. Panno, S.V., Kelly, W.R., Scott, J., Zheng, W., McNeish, R.E., Holm, N., Hoellein, T.J., and Baranski, E.L., 2019, Microplastic contamination in Karst groundwater systems, Groundwater, 57(2), 189-196.
  •  
  • 39. Piehl, S., Leibner, A., Loder, M.G.L., Dris, R., Bogner, C., and Laforsch, C., 2018, Identification and quantification of macro- and microplastics on an agricultural farmland, Sci. Rep., 8, 17950.
  •  
  • 40. PlasticsEurope, 2018, Plastics the Fact 2018. An Analysis of European Plastics Production, Demand and Waste Data, PlasticsEurope, Brussels, Belgium.
  •  
  • 41. Prata, J.C. 2018, Airborne microplastics: Consequences to human health?, Environ. Pollut., 234, 115-126.
  •  
  • 42. Prata, J.C., da Costa, J.P., Duarte, A.C., and Rocha-Santos, T., 2019, Methods for sampling and detection of microplastics in water and sediment: A critical review, Trac-Trends Anal. Chem., 110, 150-159.
  •  
  • 43. Quik, J.T.K., Velzeboer, I., Wouterse, M., Koelmans, A.A., and van de Meent, D., 2014, Heteroaggregation and sedimentation rates for nanomaterials in natural waters, Water Res., 48, 269-279.
  •  
  • 44. Razanajatovo, R.M., Ding, J., Zhang, S., Jiang, H., and Zou, H, 2018, Sorption and desorption of selected pharmaceuticals by polyethylene microplastics, Mar. Pollut. Bull., 136, 516-523.
  •  
  • 45. Rezaei, M., Riksen, M.J.P.M., Sirjani, E., Sameni, A., and Geissen, V., 2019, Wind erosion as a driver for transport of light density microplastics, Sci. Total Environ., 669, 273-281.
  •  
  • 46. Rilling, M.C., Ziersch, L., and Hempel, S., 2017, Microplastic transport in soil by earthworms, Sci. Rep., 7, 1362.
  •  
  • 47. Scalenghe, R., 2018, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, Heliyon, 4, e00941.
  •  
  • 48. Scheurer, M. and Bigalke, M., 2018, Microplastics in Swiss floodplain soils, Environ. Sci. Technol., 52, 3591-3598.
  •  
  • 49. Shim, W.J., Hong, S.H., and Eo, S.E., 2017, Identification methods in microplastic analysis: a review, Anal. Methods, 9, 1384-1391.
  •  
  • 50. Simunek, J., van Genuchten, M.T., and Sejna, M., 2008, Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone J., 7, 587-600.
  •  
  • 51. Smedes, F., Rusina, T.P., Beeltje, H., and Mayer, P., 2017, Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene, Chemosphere, 186, 948-957.
  •  
  • 52. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Troger, J., Mu Munoz, K., Fror, O., and Schaumann, G.E., 2016, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ., 550, 690-705.
  •  
  • 53. Stock, F., Kochleus, C., Bansch-Baltruschat, B., Brennholt, N., and Reifferscheid, G., 2019, Sampling techniques and preparation methods for microplastic analyses in the aquatic environment-A review, Trac-Trends Anal. Chem., 113, 84-92.
  •  
  • 54. Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., and Ni, B.-J., 2019, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Res., 152, 21-37.
  •  
  • 55. Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., and Russell, A.E., 2004, Lost at sea: Where is all the plastic?, Science, 304, 838.
  •  
  • 56. Unice, K.M., Weeber, M.P., Abramson, M.M., Reid, R.C.D., van Gils, J.A.G., Markus, A.A., Vethaak, A.D., and Panko, J.M., 2019, Characterizing export of land-based microplastics to the estuary-Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed, Sci. Total Environ., 646, 1639-1649.
  •  
  • 57. Wagner, S., Huffer, T., Praetorius, A., Klockner, P., Wehrhahn, M., Hofmann, T., and Reemtsma, T., 2018, Tire wear particles in the aquatic environment-A review on generation, analysis, occurrence, fate and effects, Water Res., 139, 83-100.
  •  
  • 58. Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., and Cai, L., 2017, Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals, Chemosphere, 171, 248-258.
  •  
  • 59. Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., and Zeng, E.Y., 2018, Interaction of toxic chemicals with microplastics: A critical review, Water Res., 139, 208-219.
  •  
  • 60. Wang, W. and Wang, J., 2018, Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis, Trac-Trends Anal. Chem., 108, 195-202.
  •  
  • 61. Waring, R.H., Harris, R.M., and Mitchell, S.C., 2018, Plastic contamination of the food chain: A threat to human health?, Maturitas, 115, 64-68.
  •  
  • 62. Yu, M., van der Ploeg, M., Lwanga, E.H., Yang, X., Zhang, S., Ma, X., Ritsema, C.J., and Geissen, V., 2019, Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows, Environ. Chem., 16, 31-40.
  •  
  • 63. Zhang, G.S. and Liu, Y.F., 2018, The distribution of microplastics in soil aggregate fractions in southwestern China, Sci. Total Environ., 642, 12-20.
  •  
  • 64. Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., and Luo, Y., 2018, The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea, Geoderma, 322, 201-208.
  •  

This Article