• Characteristics of Microbial Arsenic Oxidation under Denitrification Environment
  • Oh, Seolran;Kim, Dong-Hun;Moon, Hee Sun;
  • Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM);Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM);Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM);
  • 미생물에 의한 탈질 과정 동안의 비소 동시 산화 특성 평가
  • 오설란;김동훈;문희선;
  • 한국지질자원연구원 지질환경연구본부 지하수연구센터;한국지질자원연구원 지질환경연구본부 지하수연구센터;한국지질자원연구원 지질환경연구본부 지하수연구센터;
Abstract
Recently, groundwater contamination by mixed occurrence of arsenic (As) and nitrate ($NO_3{^-}$) has been a serious environmental issue all around world. In this study, we investigated the microbial As(III) oxidation characteristic under denitrification process to examine the feasibility of the microbial consortia in wetland sediment to simultaneously treat these two contaminants. The detail objectives of this study were to investigate the effects of $NO_3{^-}$ on the oxidation of As(III) in anaerobic environments and observe the microbial community change during the As oxidation under denitrification process. Results showed that the As(III) was completely and simultaneously oxidized to As(V) under denitrification process, however, it occurred to a much less extent in the absence of sediment or $NO_3{^-}$. In addition, the significant increase of As(III) oxidation rate in the presence of $NO_3{^-}$ suggested the potential of As oxidation under denitrification by indigenous microorganisms in wetland sediment. Genera Pseudogulbenkiania, and Flavisolibacter were identified as predominant microbial species driving the redox process. Conclusively, this study can provide useful information on As(III) oxidation under denitrifying environment and contribute to develop an effective technology for simultaneous removal of As(III) and $NO_3{^-}$ in groundwater.

Keywords: Groundwater;Arsenic oxidation;Nitrate;Microorganism;Denitrification;

References
  • 1. Ahn, J.S., Ko, K.-S., Lee, J.-S., and Kim, J.-Y., 2005, Characteristics of natural arsenic contamination in groundwater and its occurrences, Econ. Environ. Geol., 38, 547-561.
  •  
  • 2. Bahar, M.M., Megharaj, M., and Naidu, R., 2013, Bioremediation of arsenic-contaminated water: Recent advances and future prospects, Water Air Soil Pollut., 224, 1722.
  •  
  • 3. Bazylinski, D.A. and Blakemore, R.P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol., 46, 1118-1124.
  •  
  • 4. Benkovitz, C.M., Scholtz, M.T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E.C., Spiro, P.A., Logan, J.A., and Graedel, T., 1996, Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res.-Atmos., 101, 29239-29253.
  •  
  • 5. Bulut, G., Yenial, U., Emiroglu, E., and Sirkeci, A.A., 2014, Arsenic removal from aqueous solution using pyrite, J. Clean Prod., 84, 526-532.
  •  
  • 6. Chatterjee, S. and De, S., 2017, Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane, Sep. Purif. Technol., 179, 357-368.
  •  
  • 7. Das, S., Liu, C.-C., Jean, J.-S., Lee, C.-C., and Yang, H.-J., 2016, Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments, J. Hazard. Mater., 310, 11-19.
  •  
  • 8. Dong, L., Zinin, P.V., Cowen, J.P., and Ming, L.C., 2009, Iron coated pottery granules for arsenic removal from drinking water, J. Hazard. Mater., 168, 626-632.
  •  
  • 9. Fytianos, K. and Christophoridis, C., 2004, Nitrate, Arsenic and Chloride Pollution of Drinking Water in Northern Greece. Elaboration by Applying GIS, Environ. Monit. Assess., 93, 55-67.
  •  
  • 10. Ghurye, G.L., Clifford, D.A., and Tripp, A.R., 1999, Combined arsenic and nitrate removal by ion exchange, J. Am. Water Work Assoc., 91, 85-96.
  •  
  • 11. Goldberg, S., 2002, Competitive adsorption of arsenate and arsenite on oxides and clay minerals, Soil Sci. Soc. Am. J., 66, 413-421.
  •  
  • 12. Gu, Y., Van Nostrand, J.D., Wu, L., He, Z., Qin, Y., Zhao, F.-J., and Zhou, J., 2017, Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations, PloS one, 12, e0176696.
  •  
  • 13. Kim, G.B., Choi, D.H., Yoon, P.S., and Kim, K.Y., 2010, Trends of groundwater quality in the areas with a high possibility of pollution, J Korea Geo-Environ Soc, 11, 5-16.
  •  
  • 14. Hoeft, S.E., Lucas, F.o., Hollibaugh, J.T., and Oremland, R.S., 2002, Characterization of microbial arsenate reduction in the anoxic bottom waters of mono lake, California, Geomicrobiol. J., 19, 23-40.
  •  
  • 15. Li, B., Deng, C., Zhang, D., Pan, X., Al-misned, F.A., and Mortuza, M.G., 2016, Bioremediation of Nitrate- and Arsenic-Contaminated Groundwater Using Nitrate-Dependent Fe(II) Oxidizing Clostridiumsp. Strain pxl2, Geomicrobiol. J., 33, 185-193.
  •  
  • 16. Li, B., Pan, X., Zhang, D., Lee, D.-J., Al-Misned, F. A., and Mortuza, M.G., 2015, Anaerobic nitrate reduction with oxidation of Fe(II) by Citrobacter Freundii strain PXL1 - a potential candidate for simultaneous removal of As and nitrate from groundwater, Ecol. Eng., 77, 196-201.
  •  
  • 17. Lin, Y.-F., Jing, S.-R., Wang, T.-W., and Lee, D.-Y., 2002, Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands, Environ. Pollut., 119, 413-420.
  •  
  • 18. Liu, C.-W., Lin, K.-H., and Kuo, Y.-M., 2003, Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, Sci. Total Environ., 313, 77-89.
  •  
  • 19. Min, J., Boulos, L., Brown, J., Cornwell, D., Gouellec, Y., Coppola, E., Baxley, J., Rine, J., Herring, J., and Vural, N., 2006, Innovative Alternatives to Minimize Arsenic, Perchlorate, and Nitrate Residuals, Water Environment Research Foundation, Denver, CO.
  •  
  • 20. Mohapatra, D., Mishra, D., Chaudhury, G.R., and Das, R.P., 2007, Arsenic adsorption mechanism on clay minerals and its dependence on temperature, Korean J. Chem. Eng., 24, 426-430.
  •  
  • 21. Nerenberg, R. and Rittmann, B., 2004, Hydrogen-based, hollowfiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants, Water Sci. Technol., 49, 223-230.
  •  
  • 22. Nguyen, V.K., Tran, H.T., Park, Y., Yu, J., and Lee, T., 2017, Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor, J. Ind. Microbiol. Biotechnol., 44, 857-868.
  •  
  • 23. Okereke, A. and Montville, T.J., 1992, Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679, Appl. Environ. Microbiol., 58, 2463-2467.
  •  
  • 24. Osborne, F. and Ehrlich, H., 1976, Oxidation of arsenite by a soil isolate of Alcaligenes, J. Appl. Bacteriol., 41, 295-305.
  •  
  • 25. Philips, S. and Taylor, M.L., 1976, Oxidation of arsenite to arsenate by Alcaligenes faecalis, Appl. Environ. Microbiol., 32, 392-399.
  •  
  • 26. Rhine, E.D., Ni Chadhain, S.M., Zylstra, G.J., and Young, L.Y., 2007, The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers, Biochem. Biophys. Res. Commun., 354, 662-667.
  •  
  • 27. Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M., 2000, A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies, Appl. Environ. Microbiol., 66, 92-97.
  •  
  • 28. Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M., 2000, A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies, Appl. Environ. Microbiol., 66, 92-97.
  •  
  • 29. Shakya, A.K. and Ghosh, P.K., 2018, Simultaneous removal of arsenic and nitrate in absence of iron in an attached growth bioreactor to meet drinking water standards: Importance of sulphate and empty bed contact time, J. Clean Prod., 186, 304-312.
  •  
  • 30. Sharma, V.K. and Sohn, M., 2009, Aquatic arsenic: toxicity, speciation, transformations, and remediation, Environ Int, 35, 743-759.
  •  
  • 31. Shin, K.-H. and Cha, D.K., 2008, Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72, 257-262.
  •  
  • 32. Silver, S. and Phung, L.T., 2005, Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic Arsenic, Appl. Environ. Microbiol., 71, 599-608.
  •  
  • 33. Upadhyaya, G., Jackson, J., Clancy, T.M., Hyun, S.P., Brown, J., Hayes, K.F., and Raskin, L., 2010, Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixedbed bioreactor system, Water Res., 44, 4958-4969.
  •  
  • 34. Zahid, A., Hassan, M.Q., Balke, K.-D., Flegr, M., and Clark, D.W., 2008, Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh, Environ. Geol., 54, 1247-1260.
  •  
  • 35. Xie, Z., Wang, J., Wei, X., Li, F., Chen, M., Wang, J., and Gao, B., 2018, Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China, Sci. Total Environ., 644, 382-388.
  •  
  • 36. Xiu, W., Guo, H., Shen, J., Liu, S., Ding, S., Hou, W., Ma, J., and Dong, H., 2016, Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by Pseudogulbenkiania Sp. Strain 2002, Environ. Sci. Technol., 50, 6449-6458.
  •  
  • 37. Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., and Boeckx, P., 2009, Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater, Water Res., 43, 1159-1170.
  •  
  • 38. Zhang, J., Zhao, S., Xu, Y., Zhou, W., Huang, K., Tang, Z., and Zhao, F.J., 2017, Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils, Environ. Sci. Technol., 51, 4377-4386.
  •  
  • 39. Zhang, Y. and Angelidaki, I., 2013, A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC), Water Res., 47, 1827-1836.
  •  
  • 40. Zou, Q., An, W., Wu, C., Li, W., Fu, A., Xiao, R., Chen, H., and Xue, S., 2018, Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition, Environ. Chem. Lett., 16, 615-622.
  •  

This Article