Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;
제강슬래그로 충전된 컬럼에서의 카드뮴, 구리, 납의 이동성 평가
이광헌;정재식;남경필;박준범;
서울대학교 건설환경공학부;서울대학교 건설환경공학부;서울대학교 건설환경공학부;서울대학교 건설환경공학부;
References
1. 구진회, 송병열, 김희갑, 2007, 어린이 놀이터의 중금속 오염, 2007년 환경공동학술대회 논문집, 한국대기환경학회, 부산 BEXCO, p. 203
2. 김상근, 정하익, 송봉준, 장원석, 2005, Atomizing slag를 반응벽체의 매질로 이용하기 위한 중금속제거 기초연구, 2005년 춘계 학술연구회발표논문집, 한국폐기물학회, 안동대학교, p. 331-334
10. 이평구, 강민주, 박성원, 염승준, 2003, 광미와 오염토양 내 중금속 용출특성에 미치는 pH 영향: 청양과 서보중석광산, 자원환경지질, 36(6), 469-480
11. 정명채, 정문영, 최연왕, 2004, 국내 휴/폐광 금속광산 주변의 중금속 환경오염 평가, 자원환경지질, 37(1), 21-33
12. 정진기, 유경근, 이재천, 2007, 오염 토양 처리 기술의 국내현황, 2007 추계 학술발표회 논문집, 한국공업화학회, 한경대학교, p. 582-585
13. Choi, D.H., Maeng, S.J., Seo, D.C., and Lee, D.H., 1995, The effect of alkali leaching from steelmaking slag on heavy metal retainment, J. of Korea Solid Wastes Eng. Soc., 12(4), 429-436
14. Fetter, C.W., 1999, Contaminant Hydrology, 2nd Ed., Prentice-Hall Inc., New Jersey, p. 122-129
15. Gupta, V.K., Srivastava, S.K., and Mohan D., 1997, Equilibrium uptake, sorption dynamics, process optimization and column operations for the removal and recovery of malachite greenform waste water using activated carbon and activated Slag, Ind. Eng. Chem. Res., 2207-2218
16. Huang, C.P., Wang, H.W., and Chiu, P.C., 1998, Nitrate reduction by metallic iron, Wat. Res., 32(8), 2257-2264
17. Kim, T.H. and Park, K.B., 2000, Swine waterwater treatnebt orioertues if steel-making slag, Clean Technology, 6(2), 85-92
18. Kielemoes, J., Boever, P.D., and Verstraete, W., 2000, Influence of denitrification on the corrosion of iron and stainless steel powder, Environ. Sci. Technol., 34(4), 663-671
19. Lackovic, J.A., Nikolaidis, N.P., and Dobbs, G.M., 2000, Inorganic arsenic removal by zero-valent iron, Environ. Sci. Technol., 17, 29-39
20. Melitas, N., Chuffe-Moscoso, O., and Farrell, J., 2001, Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects, Environ. Sci. and Technol., 35, 3948-3953
21. Mier, M.V., Callejas, R.L., Gehr, R., Cisneros, B.E.J., and Alvarez, P.J.J., 2001, Heavy metal removal with Mexican clinoptilolite multi-component ionic exchange, Wat. Res., 35(2), 373-378
22. Murray B. McBride, 1994, Environmetal Chemistry of Soils, Oxford University Press, New York, p. 122-127
23. Park, J.B., Lee, S.H., Lee, J.W., and Lee, C.Y., 2002, Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B), J. of Haz. Mat., B95, 65-79
24. Roberts, A.L., Totten, L.A., Burris, A.W., and Campbell, T.J., 1996, Reductive elimination of chlorinated ethylenes by zerovalent iron metals, Environ. Sci. Technol., 30, 2654-2659
25. Lee, S.H., Lee, K.H., and Park, J.B., 2006, Simultaneous removal of Cd and Cr(VI) using Fe-Loaded Zeolite, J of Environ. Eng., 132(4), 445-450
26. USEPA, 1999, Field Application of In Situ Remediation Technologies: Permeable Reactive Barriers, Report # EPA 542-R-99-002
27. Westerhoff, P., 2003, Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0), J. of Environ. Eng., 129(1), 10-16