• A Study on the Change of Shear Strength of Coastal Muddy Sediment Due to the Mixing of Oyster shells with different Pyrolysis Temperature and Particle size
  • Hee-Eun Woo·IlwonJeong·In-CheolLee·KyunghoiKim*

  • Department of Ocean Engineering, Pukyong National University, Busan 48513, Korea

  • 굴 패각의 소성온도 및 입경에 따른 연안 점토질 퇴적물의 전단강도 변화에 관한 연구
  • 우희은·정일원·이인철·김경회*

  • 부경대학교 해양공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abbaslou, H., Hadifard, H., and Ghanizadeh, A.R., 2020, Effect of cations and anions on flocculation of dispersive clayey soils, Heliyon, 6(2), e03462.
  •  
  • 2. Bell, F.G., 1996, Lime stabilization of clay minerals and soils. Eng. Geol., 42(4), 223-237.
  •  
  • 3. Baek, E.Y. and Lee, W.G., 2020, A study on the rational recycling of oyster-shell, J. Fish. Bus. Adm., 51(2), 71-87.
  •  
  • 4. Bashour I.I. and Sayegh, A.H., 2007, Methods of Analysis for Soils in Arid and Semi-arid Regions, Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.
  •  
  • 5. Chorom, M., Rengasamy, P., and Murray, R.S., 1994, Clay dispersion as influenced by pH and net particle charge of sodic soils, J. Soil Res., 32(6), 1243-1252.
  •  
  • 6. Davidson, D.T., Demirel, T., and Rosauer, E.A., 1962, Mechanism of Stabilization of Cohesive Soils by Treatment with Organic Cations, in Clays and Clay Minerals, 585-591.
  •  
  • 7. DeJong, J.T., Fritzges, M.B., and Nüsslein, K., 2006, Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng., 132(11), 1381-1392.
  •  
  • 8. Dontsova, K. and Norton, L.D., 1999, Effects of exchangeable Ca: Mg ratio on soil clay flocculation, infiltration and erosion, Proceedings 10th International Soil Conservation Organization Meeting, Int. Soil Conserv. Org., West Lafayette, USA, 24-30.
  •  
  • 9. Furlan, A.P., Razakamanantsoa, A., Ranaivomanana, H., Levacher, D., and Katsumi, T., 2018, Shear strength performance of marine sediments stabilized using cement, lime and fly ash, Constr. Build. Mater., 184, 454-463.
  •  
  • 10. Gyeonggi-do Fisheries Office, 2009, A Case Study on Marking A Site for Farming Ruditapes Philippinarum to Utilize Waste Oyster Shell.
  •  
  • 11. Ha, S., Lee, J.W., Choi, S.H., Kim, S.H., Kim, K., and Kim, Y., 2019, Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling, J. Mater. Cycles Waste, 21, 1075-1084.
  •  
  • 12. Hamester, M.R.R., Balzer, P.S., and Becker, D., 2012, Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene, Mater. Res., 15(2), 204-208.
  •  
  • 13. Helfferich, F., 1962, Ion Exchange, McGraw-Hill, New York.
  •  
  • 14. Indraratna, B., Rujikiatkamjorn, C., and Balasubramaniam, A.S., 2014, Consolidation of estuarine marine clays for coastal reclamation using vacuum and surcharge loading, From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering: Honoring Roy E. Olson, 358-369.
  •  
  • 15. Jung, S.J., Lee, S.I., and Lim, H.M., 2003, Effect of the concentration of suspension and electrolyte on zeta potential, J. Korean. Ceramic Soc., 40(3), 293-300.
  •  
  • 16. Kharel, T.P., Clay, D.E., Reese, C., DeSutter, T., Malo, D., and Clay, S., 2018, Do precision chemical amendment applications impact sodium movement in dryland semiarid saline sodic soils?, Agronomy J., 110(3), 1103-1110.
  •  
  • 17. Kim, H.C., Woo, H.E., Jeong, I., Oh, S.J., Lee, S.H., and Kim, K., 2019, Changes in sediment properties caused by a covering of oyster shells pyrolyzed at a low temperature, J. Korean Soc. Mar. Environ. Saf., 25(1), 74-80.
  •  
  • 18. Kim, J.G., Oh, M., Lee, M., and Lee, J.Y., 2017, A feasibility study on soil-cement improved using oyster shell and microorganisms, J. Korea Soc. Waste Manag., 34(5), 442-448.
  •  
  • 19. Kim, K. and Kim, K., 2020, Remediation of contaminated intertidal sediment by increasing permeability using active capping material, J. Environ. Manag., 253, 109769.
  •  
  • 20. Kim, M.J., Wang, X., Lee, J.J., Lee, S.H., Kim, S.B., and Kim, C.J., 2013, Development of flowable backfill material using waste oyster shell, coal ash, and surplus soil, Clean Tech., 19(4), 423-429.
  •  
  • 21. Kim T.H., Lee, C.H., Lee, J.H., Oh, D.H., and Kim, G.B., 2016, Estimation of groundwater yield at a horizontal well using soil characteristics at riverbank filtration site, J. Geol. Soc. Korea, 52(3), 291-301.
  •  
  • 22. Lee, S., Yoon, G., Lee, Y., Lee, K., Kang, I., Kim, H., and Baek, S., 2007, Shear strength characteristics of dredged soil with oyster shell binder, J. Korean Geo-Envrion. Soc., 8(1), 27-32.
  •  
  • 23. Mahanta, K.K., Mishra, G.C., and Kansal, M.L., 2014, Estimation of the electric double layer thickness in the presence of two types of ions in soil water, Appl. Clay Sci., 87, 212-218.
  •  
  • 24. Marchuk, A. and Rengasamy, P., 2011, Clay behaviour in suspension is related to the ionicity of clay-cation bonds, Appl. Clay Sci., 53(4), 754-759.
  •  
  • 25. Moon, D.H., Wazne, M., Cheong, K.H., Chang, Y.Y., Baek, K., Ok, Y.S., and Park, J.H., 2015, Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag, Environ. Sci. Pollut. Res., 22(14), 11162-11169.
  •  
  • 26. Mun, M.H. and Kang, I.S., 2010, The effect of particle size on the detergency of particulate soil, J. Korean Soc. Cloth. Text., 34(4), 653-662.
  •  
  • 27. Pourabadehei, M., and Mulligan, C.N., 2016, Resuspension of sediment, a new approach for remediation of contaminated sediment, Environ. Pollut., 213, 63-75.
  •  
  • 28. Rahman, Z.A., Yaacob, W.Z.W., Rahim, S.A., Lihan, T., Idris, W.M.R., and Mohd Sani, W.N.F., 2013, Geotechnical characterisation of marine clay as potential liner material, Sains Malays., 42(8), 1081-1089.
  •  
  • 29. Rengasamy, P., Tavakkoli, E., and McDonald, G.K., 2016, Exchangeable cations and clay dispersion: net dispersive charge, a new concept for dispersive soil, Eur. J. Soil Sci., 67(5), 659-665.
  •  
  • 30. Seo, J.H., Kim, M.H., Park, J.H., and Kyoun, D.Y., 2003, A study of effects of dredged soil improvement and heavy iron removal by using oyster shells, J. Korean. Soc. Civ. Eng., 3590-3594.
  •  
  • 31. Sumner, M.E., 2000, Handbook of Soil Science, CRC Press, Boca Raton London New York Washington, D.C.
  •  
  • 32. Woo, H.E., Kim, K., Lee, I.C., and Kim, K., 2018, A study on phosphate removal efficiency by pre-treatment conditioning of oyster shells, J. Korean Soc. Mar. Environ. Saf., 24(2), 196-202.
  •  
  • 33. Wu, Q., Chen, J., Clark, M., and Yu, Y., 2014, Adsorption of copper to different biogenic oyster shell structures, Appl. Surf. Sci., 311, 264-272.
  •  
  • 34. Yao, J., Han, H., Hou, Y., Gong, E., and Yin, W., 2016, A method of calculating the interaction energy between particles in minerals flotation, Math. Probl. Eng., 2016, 1-13.
  •  
  • 35. Yoon, G.L., Kwon, O.S., Im, Y.J., and Yang, E.I., 2001, Engineering Characteristics of waste oyster shell for recycling, J. Korean Soc. Civ. Eng., 21, 421-431.
  •  
  • 36. Yu, Y., Wu, R., and Clark, M., 2010, Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell, J. Colloid and Interface Sci., 350(2), 538-543.
  •  

This Article

  • 2021; 26(1): 17-23

    Published on Feb 28, 2021

  • 10.7857/JSGE.2021.26.1.017
  • Received on Nov 30, 2020
  • Revised on Dec 10, 2020
  • Accepted on Jan 22, 2021

Correspondence to

  • KyunghoiKim
  • Department of Ocean Engineering, Pukyong National University, Busan 48513, Korea

  • E-mail: hoikim@pknu.ac.kr