• The Potential Application of Passive Sampling Techniques in Contaminated Soil and Groundwater
  • Pil-Gon Kim1·Joungho Park2·JaeKyoung Moon2·Jung-Hwan Kwon1·Jihee Kim3·Seunghee Han3·Yongseok Hong2*

  • 1Division of Environmental Science and Ecological Engineering, Korea University
    2College of Science and Technology, Korea University Sejong Campus
    3School of Earth Sciences and Environmental Engineering, GIST

  • 오염 토양 및 지하수에서 수동샘플러 적용 방안 연구
  • 김필곤1·박중호2·문재경2·권정환1·김지희3·한승희3·홍용석2*

  • 1고려대학교 환경생태공학부
    2고려대학교 환경시스템공학과
    3광주과기원 환경공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Adamson, D.T., McHugh, T.E., Rysz, M.W., Landazuri, R., and Newell, C.J., 2012, Field Investigation of Vapor-phase-based Groundwater Monitoring, Ground Water Monit Remediat, 32(1), 59-72.
  •  
  • 2. Amato, E.D., Simpson, S.L., Belzunce-Segarra, M.J., Jarolimek, C.V., and Jolley, D.F., 2015, Metal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates, Environ. Sci. Technol., 49(24), 14204-14212.
  •  
  • 3. Amato, E.D., Simpson, S.L., Remaili, T.M., Spadaro, D.A., Jarolimek, C.V., and Jolley, D.F., 2016, Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT), Environ. Sci. Technol., 50(6), 3055-3064.
  •  
  • 4. Apell, J.N. and Gschwend, P.M., 2014, Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds, Environ. Sci. Technol., 48(17), 10301-10307.
  •  
  • 5. Arp, H.P.H., Lundstedt, S., Josefsson, S., Cornelissen, G., Enell, A., Allard, A.-S., and Kleja, D.B., 2014, Native Oxy-PAHs, N-PACs, and PAHs in Historically Contaminated Soils from Sweden, Belgium, and France: Their Soil-Porewater Partitioning Behavior, Bioaccumulation in Enchytraeus crypticus, and Bioavailability, Environ. Sci. Technol., 48(19), 11187-11195.
  •  
  • 6. Asl-Hariri, S., Gómez-Ríos, G.A., Gionfriddo, E., Dawes, P., and Pawliszyn, J., 2014, Development of Needle Trap Technology for On-Site Determinations: Active and Passive Sampling, Anal. Chem., 86(12), 5889-5897.
  •  
  • 7. ASTM, 2013, D6246-08(2013)e1, Standard Practice for Evaluating the Performance of Diffusive Samplers, ASTM International, West Conshohocken, PA, 2013.
  •  
  • 8. ASTM, 2016, ASTM D7758 - 11(2016) Standard Practice for Passive Soil Gas Sampling in the Vadose Zone for Source Identification, Spatial Variability Assessment, Monitoring, and Vapor Intrusion Evaluations.
  •  
  • 9. Bade, R., Oh, S., and Shin, W.S., 2012, Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations, Sci. Total Environ., 416, 127-136.
  •  
  • 10. Bao, L.J., Wu, X., Jia, F., Zeng, E.Y., and Gan, J., 2016, Isotopic exchange on solid-phase micro extraction fiber in sediment under stagnant conditions: Implications for field application of performance reference compound calibration, Environ. Toxicol. Chem., 35(8), 1978-1985.
  •  
  • 11. Barcelona, M.J. and Helfrich, J.A., 1986, Well construction and purging effects on ground-water samples, Environ. Sci. Technol., 20(11), 1179-1184.
  •  
  • 12. Barcelona, M.J., Varljen, M.D., Puls, R.W., and Kaminski, D., 2005, Ground water purging and sampling methods: History vs. hysteria, Ground Water Monit Remediat, 25(1), 52-62.
  •  
  • 13. Bopp, S., Wei©¬, H., and Schirmer, K., 2005, Time-integrated monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater using the Ceramic Dosimeter passive sampling device. J. CHROMATOGR. A, 1072(1), 137-147.
  •  
  • 14. Bopp, S.K., McLachlan, M.S., and Schirmer, K., 2007, Passive Sampler for Combined Chemical and Toxicological Long-Term Monitoring of Groundwater:  The Ceramic Toximeter, Environ. Sci. Technol., 41(19), 6868-6876.
  •  
  • 15. Britt, S.L., Parker, B.L., and Cherry, J.A., 2010, A Downhole Passive Sampling System To Avoid Bias and Error from Groundwater Sample Handling, Environ. Sci. Technol., 44(13), 4917-4923.
  •  
  • 16. Burgess, R.M., Lohmann, R., Schubauer-Berigan, J.P., Reitsma, P., Perron, M.M., Lefkovitz, L., and Cantwell, M.G., 2015, Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites, Environ. Toxicol. Chem., 34(8), 1720-1733.
  •  
  • 17. Cattani, I., Fragoulis, G., Boccelli, R., and Capri, E., 2006, Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils, Chemosphere, 64(11), 1972-1979.
  •  
  • 18. Challis, J.K., Hanson, M.L., and Wong, C.S., 2016, Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants, Anal. Chem., 88(21), 10583-10591.
  •  
  • 19. Davison, W., Grime, G.W., Morgan, J.A.W., and Clarke, K., 1991, Distribution of dissolved iron in sediment pore waters at submillimetre resolution, Nature, 352, 323-325.
  •  
  • 20. de Jonge, H. and Rothenberg, G., 2005, New Device and Method for Flux-Proportional Sampling of Mobile Solutes in Soil and Groundwater, Environ. Sci. Technol., 39(1), 274-282.
  •  
  • 21. DeSutter, T.M., Sauer, T.J., and Parkin, T.B., 2006, Porous tubing for use in monitoring soil CO2 concentrations, Soil Biol. Biochem., 38(9), 2676-2681.
  •  
  • 22. DiGiulio, D., Paul, C., Cody, R., Willey, R., Clifford, S., Mosley, R., Lee, A., and Christensen, K., 2006, Comparison of Geoprobe¢ç PRT and AMS GVP Soil-Gas Sampling Systems with Dedicated Vapor Probes in Sandy Soils at the Raymark Superfund Site, U.S. Environmental Protection Agency Office Of Research And Development National Risk Management Research Laboratory Cincinnati, OH 45268.
  •  
  • 23. Divine, C.E. and McCray, J.E., 2004, Estimation of Membrane Diffusion Coefficients and Equilibration Times for Low-Density Polyethylene Passive Diffusion Samplers, Environ. Sci. Technol., 38(6), 1849-1857.
  •  
  • 24. Dočekalová, H., Kovaříková, V., and Dočekal, B., 2012, Mobility and bioaccessibility of trace metals in soils assessed by conventional extraction procedures and passive diffusive samplers, Chem. Speciat. Bioavailab., 24(4), 261-265.
  •  
  • 25. Duquène, L., Vandenhove, H., Tack, F., Van Hees, M., and Wannijn, J., 2010, Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass, J Environ Radioact, 101(2), 140-147.
  •  
  • 26. Endo, S., Hale, S.E., Goss, K.-U., and Arp, H.P.H., 2011, Equilibrium Partition Coefficients of Diverse Polar and Nonpolar Organic Compounds to Polyoxymethylene (POM) Passive Sampling Devices, Environ. Sci. Technol., 45(23), 10124-10132.
  •  
  • 27. Enell, A., Lundstedt, S., Arp, H.P.H., Josefsson, S., Cornelissen, G., Wik, O., and Berggren Kleja, D., 2016, Combining Leaching and Passive Sampling To Measure the Mobility and Distribution between Porewater, DOC, and Colloids of Native Oxy-PAHs, N-PACs, and PAHs in Historically Contaminated Soil, Environ. Sci. Technol., 50(21), 11797-11805.
  •  
  • 28. Ernstberger, H., Zhang, H., Tye, A., Young, S., and Davison, W., 2005, Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT, Environ. Sci. Technol., 39(6), 1591-1597.
  •  
  • 29. Fauvelle, V., Kaserzon, S.L., Montero, N., Lissalde, S., Allan, I.J., Mills, G., Mazzella, N., Mueller, J.F., and Booij, K., 2017, Dealing with Flow Effects on the Uptake of Polar Compounds by Passive Samplers, Environ. Sci. Technol., 51(5), 2536-2537.
  •  
  • 30. Fernandez, L.A., Lao, W., Maruya, K.A., and Burgess, R.M., 2014, Calculating the Diffusive Flux of Persistent Organic Pollutants between Sediments and the Water Column on the Palos Verdes Shelf Superfund Site Using Polymeric Passive Samplers, Environ. Sci. Technol., 48(7), 3925-3934.
  •  
  • 31. Fones, G.R., Davison, W., Holby, O., Jorgensen, B.B., and Thamdrup, B., 2001, High‐resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander, Limnol. Oceanogr. 46(4), 982-988.
  •  
  • 32. Freedman, Y.E., Ronen, D., and Long, G.L., 1996, Determination of Cu and Cd Content of Groundwater Colloids by Solid Sampling Graphite Furnace Atomic Absorption Spectrometry, Environ. Sci. Technol., 30(7), 2270-2277.
  •  
  • 33. Gao, Y., Leermakers, M., Gabelle, C., Divis, P., Billon, G., Ouddane, B., Fischer, J.-C., Wartel, M., and Baeyens, W., 2006, High-resolution profiles of trace metals in the pore waters of riverine sediment assessed by DET and DGT, Sci. Total Environ., 362(1-3), 266-277.
  •  
  • 34. Garnier, J.-M., Garnier, J., Jézéquel, D., and Angeletti, B., 2015, Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh, Sci. Total Environ., 536, 306-315.
  •  
  • 35. Go, U.J. and Eom, I.-Y., 2014, Development of syringe pump assisted headspace sampler, J. Chromatogr. A, 1361, 88-94.
  •  
  • 36. Gomez-Eyles, J.L., Jonker, M.T.O., Hodson, M.E., and Collins, C.D., 2012, Passive Samplers Provide a Better Prediction of PAH Bioaccumulation in Earthworms and Plant Roots than Exhaustive, Mild Solvent, and Cyclodextrin Extractions, Environ. Sci. Technol., 46(2), 962-969.
  •  
  • 37. Górecki, T. and Namieśnik, J., 2002, Passive sampling. Trends. Analyt. Chem., 21(4), 276-291.
  •  
  • 38. Greenwood, R., Mills, G., and Vrana, B., 2007, Passive Sampling Techniques in Environmental Monitoring, Volume 48, 1st Edition,Comprehensive Analytical Chemistry, Elsevier Science.
  •  
  • 39. Gut, A., Blatter, A., Fahrni, M., Lehmann, B.E., Neftel, A., and Staffelbach, T., 1998, A new membrane tube technique (METT) for continuous gas measurements in soils, Plant Soil, 198(1), 79-88.
  •  
  • 40. Hale, S.E., Elmquist, M., Brandli, R., Hartnik, T., Jakob, L., Henriksen, T., Werner, D., and Cornelissen, G., 2012, Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial, Chemosphere, 87(2), 177-184.
  •  
  • 41. Hong, L. and Luthy, R.G., 2008, Uptake of PAHs into polyoxymethylene and application to oil-soot (lampblack)-impacted soil samples, Chemosphere, 72(2), 272-281.
  •  
  • 42. ITRC, 2007a, (Interstate Technology & Regulatory Council) Vapor Intrusion Pathway: A Practical Guideline. VI-1. Washington, D.C.: Interstate Technology & Regulatory Council, Vapor Intrusion Team. www.itrcweb.org.
  •  
  • 43. ITRC, 2007b, Protocol for Use of Five Passive Samplers to Sample for a Variety of Contaminants in Groundwater (The Interstate Technology & Regulatory Council), Document DSP5.
  •  
  • 44. Jacinthe, P.A., Dick, W.A., 1996, Use of silicone tubing to sample nitrous oxide in the soil atmosphere. Soil Biol. Biochem., 28(6), 721-726.
  •  
  • 45. Johnson, R.E. and Hajcak, C.A., 2007, Passive Diffusion Groundwater Samplers: A New Way to Sample Groundwater, Environ. Claims J., 19(1-2), 88-96.
  •  
  • 46. Joyce, A.S., Portis, L.M., Parks, A.N., and Burgess, R.M., 2016, Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation, Environ. Sci. Technol., 50(21), 11437-11451.
  •  
  • 47. Kalis, E.J., Weng, L., Dousma, F., Temminghoff, E.J., and Van Riemsdijk, W.H., 2006, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique, Environ. Sci. Technol., 40(3), 955-961.
  •  
  • 48. Kaserzon, S.L., Kennedy, K., Hawker, D.W., Thompson, J., Carter, S., Roach, A.C., Booij, K., and Mueller, J.F., 2012, Development and Calibration of a Passive Sampler for Perfluorinated Alkyl Carboxylates and Sulfonates in Water, Environ. Sci. Technol., 46(9), 4985-4993.
  •  
  • 49. Kaserzon, S.L., Vijayasarathy, S., Bräunig, J., Mueller, L., Hawker, D.W., Thomas, K.V., and Mueller, J.F., 2019, Calibration and validation of a novel passive sampling device for the time integrative monitoring of per-and polyfluoroalkyl substances (PFASs) and precursors in contaminated groundwater, J. Hazard. Mater., 366, 423-431.
  •  
  • 50. Kočí, V., Ocelka, T., and Grabic, R., 2009, Background level of POPs in ground water assessed on chemical and toxicity analysis of exposed semipermeable membrane devices, Air, Soil Water Res. 2, ASWR. S2128.
  •  
  • 51. Kot-Wasik, A., Zabiega©©a, B., Urbanowicz, M., Dominiak, E., Wasik, A., and Namieśnik, J., 2007, Advances in passive sampling in environmental studies, Anal. Chim. Acta, 602(2), 141-163.
  •  
  • 52. Kot, A., Zabiega©©a, B., and Namieśnik, J., 2000, Passive sampling for long-term monitoring of organic pollutants in water, Trends Analyt Chem, 19(7), 446-459.
  •  
  • 53. Kwon-Rae, K., and Owens, G., 2009, Chemodynamics of heavy metals in long-term contaminated soils: Metal speciation in soil solution, J Environ Sci (China), 21(11), 1532-1540.
  •  
  • 54. Louise, P., Willey, R., Mchale, T., Major, W., Hall, T., Bailey, R., Gagnon, K., and Gooch, G., 2014, Demonstration of the AGI Universal Samplers (F.K.A. the GORE¢ç Modules) for Passive Sampling of Groundwater, Environmental Security Technology Certification Program (ESTCP), Project ER-200921.
  •  
  • 55. Laemmel, T., Maier, M., Schack-Kirchner, H., and Lang, F., 2017, An in situ method for real-time measurement of gas transport in soil, Eur. J. Soil. Sci., 68(2), 156-166.
  •  
  • 56. Lang, S.-C., Hursthouse, A., Mayer, P., Kötke, D., Hand, I., Schulz-Bull, D., and Witt, G., 2015, Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems, Mar. Pollut. Bull., 101(1), 296-303.
  •  
  • 57. Laor, Y., Ronen, D., and Graber, E.R., 2003, Using a Passive Multilayer Sampler for Measuring Detailed Profiles of Gas-Phase VOCs in the Unsaturated Zone, Environ. Sci. Technol., 37(2), 352-360.
  •  
  • 58. Leermakers, M., Gao, Y., Gabelle, C., Lojen, S., Ouddane, B., Wartel, M., and Baeyens, W., 2005, Determination of High Resolution Pore Water Profiles of Trace Metals in Sediments of the Rupel River (Belgium) using Det (Diffusive Equilibrium in Thin Films) and DGT (Diffusive Gradients in Thin Films) Techniques, Water Air Soil Pollut., 166(1-4), 265-286.
  •  
  • 59. Lucas, A.R., Reid, N., Salmon, S.U., and Rate, A.W., 2014, Quantitative assessment of the distribution of dissolved Au, As and Sb in groundwater using the diffusive gradients in thin films technique, Environ. Sci. Technol., 48(20), 12141-12149.
  •  
  • 60. Magnusson, T., 1989, A method for equilibration chamber sampling and gas chromatographic analysis of the soil atmosphere, Plant Soil, 120(1), 39-47.
  •  
  • 61. Mali, N., Cerar, S., Koroša, A., and Auersperger, P., 2017, Passive sampling as a tool for identifying micro-organic compounds in groundwater. Sci. Total Environ., 593-594, 722-734.
  •  
  • 62. Marchal, G., Smith, K.E., Mayer, P., Wollesen de Jonge, L., and Karlson, U.G., 2014, Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil, Environ. Pollut. (Barking, Essex : 1987), 188, 124-131.
  •  
  • 63. Martin, H., Patterson, B.M., Davis, G.B., and Grathwohl, P., 2003, Field Trial of Contaminant Groundwater Monitoring:  Comparing Time-Integrating Ceramic Dosimeters and Conventional Water Sampling, Environ. Sci. Technol., 37(7), 1360-1364.
  •  
  • 64. Maruya, K.A., Zeng, E.Y., Tsukada, D., and Bay, S.M., 2009, A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water, Environ. Toxicol. Chem., 28(4), 733-740.
  •  
  • 65. Mayer, P., Parkerton, T.F., Adams, R.G., Cargill, J.G., Gan, J., Gouin, T., Gschwend, P.M., Hawthorne, S.B., Helm, P., Witt, G., You, J., and Escher, B.I., 2014, Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations, Integr. Environ. Assess. Manag., 10(2), 197-209.
  •  
  • 66. McLeish, K., Ryan, M.C., and Chu, A., 2007, Integrated Sampling and Analytical Approach for Common Groundwater Dissolved Gases, Environ. Sci. Technol., 41(24), 8388-8393.
  •  
  • 67. Muhammad, I., Puschenreiter, M., and Wenzel, W.W., 2012, Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants, Sci. Total Environ., 416, 490-500.
  •  
  • 68. Muijs, B. and Jonker, M.T., 2012, Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms?, Environ. Sci. Technol., 46(2), 937-944.
  •  
  • 69. Nauer, P.A., Chiri, E., and Schroth, M.H., 2013, Poly-Use Multi-Level Sampling System for Soil-Gas Transport Analysis in the Vadose Zone, Environ. Sci. Technol., 47(19), 11122-11130.
  •  
  • 70. NRC, 2003, Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications, Committee on Bioavailability of Contaminants in Soils and Sediments, National Research Council.
  •  
  • 71. Ort, C., Lawrence, M.G., Rieckermann, J., and Joss, A., 2010, Sampling for Pharmaceuticals and Personal Care Products (PPCPs) and Illicit Drugs in Wastewater Systems: Are Your Conclusions Valid? A Critical Review, Environ. Sci. Technol., 44(16), 6024-6035.
  •  
  • 72. Panikov, N.S., Mastepanov, M.A., and Christensen, T.R., 2007, Membrane probe array: Technique development and observation of CO2 and CH4 diurnal oscillations in peat profile, Soil Biol. Biochem., 39(7), 1712-1723.
  •  
  • 73. Papastefanou, C., 2002, An overview of instrumentantion for measuring radon in soil gas and groundwaters, J Environ Radioact, 63(3), 271-283.
  •  
  • 74. Peng, Q., Wang, M., Cui, Z., Huang, J., Chen, C., Guo, L., and Liang, D., 2017, Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT), Environ. Pollut., 225, 637-643.
  •  
  • 75. Petersen, S.O., 2014, Diffusion probe for gas sampling in undisturbed soil, Eur J Soil Sci, 65(5), 663-671.
  •  
  • 76. Roulier, J.L., Tusseau-Vuillemin, M.H., Coquery, M., Geffard, O., and Garric, J., 2008, Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: First results of an experimental study, Chemosphere, 70(5), 925-932.
  •  
  • 77. Scherr, K.E., Hasinger, M., Mayer, P., and Loibner, A.P., 2009, Effect of vegetable oil addition on bioaccessibility and biodegradation of polycyclic aromatic hydrocarbons in historically contaminated soils, J. Chem. Technol. Biotechnol., 84(6), 827-835.
  •  
  • 78. Seethapathy, S., Górecki, T., and Li, X., 2008, Passive sampling in environmental analysis. J. Chromatogr. A, 1184(1-2), 234-253.
  •  
  • 79. Senila, M., 2014, Real and simulated bioavailability of lead in contaminated and uncontaminated soils, J. Environ. Health Sci. Eng., 12, 108.
  •  
  • 80. Senila, M., Levei, E.A., and Senila, L.R., 2012, Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics, Chem. Cent. J., 6(1), 119.
  •  
  • 81. Simpson, S.L., Yverneau, H., Cremazy, A., Jarolimek, C.V., Price, H.L., and Jolley, D.F., 2012, DGT-Induced Copper Flux Predicts Bioaccumulation and Toxicity to Bivalves in Sediments with Varying Properties, Environ. Sci. Technol., 46(16), 9038-9046.
  •  
  • 82. Spalding, B.P. and Watson, D.B., 2006, Measurement of Dissolved H2, O2, and CO2 in Groundwater Using Passive Samplers for Gas Chromatographic Analyses, Environ. Sci. Technol., 40(24), 7861-7867.
  •  
  • 83. Stefaniuk, M. and Oleszczuk, P., 2016, Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil, Environ. Pollut. (Barking, Essex : 1987), 218, 242-251.
  •  
  • 84. Temminghoff, E.J., Plette, A.C., Van Eck, R., and Van Riemsdijk, W.H., 2000, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique, Anal. Chim. Acta, 417(2), 149-157.
  •  
  • 85. Ter Laak, T.L., Agbo, S.O., Barendregt, A., and Hermens, J.L., 2006, Freely dissolved concentrations of PAHs in soil pore water: measurements via solid-phase extraction and consequences for soil tests, Environ. Sci. Technol., 40(4), 1307-1313.
  •  
  • 86. USEPA, 1989, Risk Assessment Guidance for Superfund. Volume I. Human Health Evaluation Manual (Part A). EPA/540/1-89/002.
  •  
  • 87. USEPA, 2002, Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers, Office of Solid Waste and Emergency Response, EPA 542-S-02-001.
  •  
  • 88. USEPA, 2007, Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment, OSWER 9285.7-80.
  •  
  • 89. USEPA, 2015, Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, June 2015.
  •  
  • 90. Vandenhove, H., Antunes, K., Wannijn, J., Duquène, L., and Van Hees, M., 2007, Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability. Sci. Total Environ., 373(2-3), 542-555.
  •  
  • 91. Vinturella, A.E., Burgess, R.M., Coull, B.A., Thompson, K.M., and Shine, J.P., 2004, Use of Passive Samplers To Mimic Uptake of Polycyclic Aromatic Hydrocarbons by Benthic Polychaetes, Environ. Sci. Technol., 38(4), 1154-1160.
  •  
  • 92. Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J., and Morrison, G., 2005, Passive sampling techniques for monitoring pollutants in water, Trends Analyt Chem, 24(10), 845-868.
  •  
  • 93. Vroblesky, D., 2001a, User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells, Part 1: Deployment, Recovery, Data Interpretation, and Quality Control and Assurance; U.S. Geological Survey Water-Resources Investigations Report 01-4060, 18 pp.
  •  
  • 94. Vroblesky, D., 2001b, User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells, Part 2: Field Tests; U.S. Geological Survey Water-Resources Investigations Report 01-4061.
  •  
  • 95. Weisbrod, N., Ronen, D., and Nativ, R., 1996, New Method for Sampling Groundwater Colloids under Natural Gradient Flow Conditions, Environ. Sci. Technol., 30(10), 3094-3101.
  •  
  • 96. Weng, L., Van Riemsdijk, W.H., and Temminghoff, E.J., 2010, Effects of lability of metal complex on free ion measurement using DMT, Environ. Sci. Technol., 44(7), 2529-2534.
  •  
  • 97. Yao, Y., Wang, P.-F., Wang, C., Hou, J., and Miao, L.-Z., 2017, The Evaluation on the Cadmium Net Concentration for Soil Ecosystems, Int. J. Environ. Res. Public Health, 14(3), 297.
  •  
  • 98. Yin, H., Cai, Y., Duan, H., Gao, J., and Fan, C., 2014, Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes, J. Hazard. Mater., 264, 184-194.
  •  
  • 99. Zarrouk, S., Bermond, A., Benzina, N.K., Sappin-Didier, V., and Denaix, L., 2014, Diffusive gradient in thin-film (DGT) models Cd and Pb uptake by plants growing on soils amended with sewage sludge and urban compost, Environ Chem Lett, 12(1), 191-199.
  •  
  • 100. Zhang, C., Ding, S., Xu, D., Tang, Y., and Wong, M.H., 2014, Bioavailability assessment of phosphorus and metals in soils and sediments: a review of diffusive gradients in thin films (DGT), Environ. Monit. Assess., 186(11), 7367-7378.
  •  
  • 101. Zhang, H. and Davison, W., 1995, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem., 67(19), 3391-3400.
  •  
  • 102. 한국지하수토양환경학회, 2008, 토양위해성평가, 동화기술.
  •  
  • 103. Yong Seok, H., 2013, 종설 : 박막분산탐침(diffusive gradient in thin film probe)의 수중 생물학적 이용가능한 중금속 측정 적용, 한국물환경학회지, 29(5), 691-702.
  •  
  • 104. 환경부, 2015, 토양오염물질 위해성평가 지침.
  •  

This Article

  • 2021; 26(2): 1-16

    Published on Apr 30, 2021

  • 10.7857/JSGE.2021.26.2.001
  • Received on Apr 13, 2021
  • Revised on Apr 16, 2021
  • Accepted on Apr 20, 2021

Correspondence to

  • Yongseok Hong
  • College of Science and Technology, Korea University Sejong Campus

  • E-mail: yongseokhong@korea.ac.kr