• Electrokinetic Injection characteristics of Ions into Kaolinite and Sand for Bioremediation
  • 토질에 따른 Electrokinetic 이온 주입 특성
  • 한상재;이호창;김수삼;
  • 한양대학교 공학기술연구소;한국수도환경연구소;한양대학교 토목환경공학과;
Abstract
Nowdays electrokinetic technique has been applied to supply nutrients and TEAs for in-situ bioremediation. However the Injection characteristics under electrical field have not been examined in various soil types. Therefore, The characteristics of electrokinetic injection into kaolinite and sand are investigated. During the 17 d of processing, There was a gradual increase in ammonium (nutrient) concentration from the anode compartment. However the ammonium concentration at the cathode increased beyond that at the anode in sand. A relatively constant profile of sulfate (TEA) was achieved specifically, the final sulfate concentration in each specimen were different. When EK injection technique is implemented in field, the most important consideration should be an assessment of the injection characteristics with respect to the soil types.

현재 원위치 bioremediation을 목적으로 EK (electrokinetlc)기법에 의한 영양분과 TEAs (Terminal electron accepters) 공급이 연구되고 있으나, 아직까지 다양한 토질에서의 EK 주입특성 연구는 미비하다. 따라서 본 연구에서는 카올린과 모래시료에 대하여 영양분인 암모늄이온과 TEAs로서 황산염이온의 EK주입실험을 수행하였다. EK주입에 의한 암모늄이온의 경우 카올린에서는 주입부(양극)에서 높은 농도분포를 보이며, 특별히 모래의 경우는 음극에서 더욱 높은 농도분포를 보인다. 황산염이온의 주입분포는 두 시료에서 모두 균일한 주입분포를 보이지만 두 시료에서의 농도차는 크게 달랐다. 따라서 원위치 bioremediation에 EK 주입기법을 이용할 경우 토질에 따른 주입특성의 평가가 가장 중요하게 고려되어야 한다.

Keywords: electrokinetic;bloremediation;kaolinite;sand;

Keywords: 동전기;생물학적 복원;카올리나이트;모래;

References
  • 1. Britles, A. B., 1978, Identification and separation of major base flow components from a stream hydrograph, Water Resource Research, 14(5), p. 791-803
  •  
  • 2. Brutsaert, W. and Nieber, J. L., 1977, Regionalized drought flow hydrographs from a mature glaciate plateau, Water Resource Research, 13, p. 637-643
  •  
  • 3. Chow, V. T. and Maidmem, D. R. and Mays, L. W., 1988, Applied Hydrology, MeGraw-Hill, New ork
  •  
  • 4. Gregory, K. J. and Walling, D. E., 1968, The variation of drainage density within a catchment, Int, assoc. Sci. Hydrol. Bull, 13(2), p. 61-68
  •  
  • 5. Hall E. R., 1968, Base flow recessions: a review, Water Resource Research, 4(5), p. 973-983
  •  
  • 6. Hino, M. and Hasebe, M., 1981, Analysis of hydrologic characteristics from runoff data-a hydrologic inverse problem, J. of Hydrology,4 9, p. 287-313
  •  
  • 7. Institute of Hydrology, 1980, Low flow studies, Wallingford, Oxon, United Kingdom, Report No. 3, p. 12-1
  •  
  • 8. Laccey G. C. and Grayson R. B., 1998, Relating baseflow to catch-ment properties in south-eastern Australia, J. of Hydrology, 204, p. 231-250
  •  
  • 9. Nathan, R. J. and Austin, K. and Crawford, D. and Jayasuriya, N., 1996, The estimation of monthly yield in ungaged catchments using a lumped conceptional model, Water Resource Reseaich, 1(2), p. 65-75
  •  
  • 10. Nathan, R. J. and McMahon, T. A., 1990, Evaluation of automated techniques for base flow and recession analysis, Water Resource Research, 26(7), p. 1465-1473
  •  
  • 11. Singh, K. P., 1968, Some factors affecting base flow, Water Resource Research, 4(5), p. 985-999
  •  
  • 12. Singh, K. P., Stall, J .B., 1971, Derivation of base flow recession curves and parameters, Water Resource Research, 7(2), p. 292- 303
  •  
  • 13. Vogel, R. M. and Kroll, C. N., 1992, Regional geohydrologic-geo-morphic relationships for the estimation of low-flow statistics, Water Resource Research, 28(9), p. 2451-2458
  •  
  • 14. Ward, R. C. and Robinson, M., 1990, Principles of hydrology, MeGraw-Hill, New York
  •  
  • 15. Zecharias, Y. B. and Brutsaert, W., 1988, The influence of basin morphology on groundwater outflow, Water Resource Research, 24(10), p.1645-1650
  •  
  • 16. 이원환, 김재한, 1985, 기저유출 분리를 위한 강우와 감수곡선간의 상관해석. 한국수문학회지, 18(1), p. 85-94
  •  
  • 17. 한국수자원공사, 1995, 금강유역조사보고서, p. 2-1-3-35
  •  
  • 18. 한국수자원공사, 1995-1998, 수문자료집
  •  

This Article

  • 2002; 7(1): 15-24

    Published on Mar 1, 2002